需求人群:
"目标受众为机器人学习、人工智能领域的研究人员、开发者和企业。AGIBOT WORLD提供的大规模、高质量数据集能够帮助他们进行更深入的研究和开发,推动机器人技术在实际应用中的进展,特别是在精细操控、工具使用和多机器人协作等复杂任务中。"
使用场景示例:
案例一:研究人员使用AGIBOT WORLD数据集进行模仿学习研究,提高了机器人在复杂环境中的操作效率。
案例二:企业利用AGIBOT WORLD提供的定制数据服务,开发出适应特定工业场景的机器人。
案例三:学术界通过AGIBOT WORLD的开源平台,共同推动机器人技术在多智能体协作领域的进步。
产品特色:
• 1M+轨迹数据:包含100台以上机器人的100万条以上轨迹数据。
• 100+真实场景:覆盖100多个真实世界场景,涵盖五大目标领域。
• 精细操控与工具使用:支持精细操控、工具使用和多机器人协作的研究。
• 多模态硬件支持:包括视觉触觉传感器、耐用的6自由度灵巧手和移动双臂机器人。
• 研究支持:支持模仿学习、多智能体协作等多种研究领域。
• 开源平台:邀请全球研究人员和实践者共同参与,推动具身AI的发展。
• 数据定制服务:提供定制化的机器人学习数据服务,满足特定需求。
使用教程:
1. 访问AGIBOT WORLD官方网站。
2. 注册账户并登录,以便访问数据集和相关资源。
3. 根据研究或开发需求,选择合适的数据集进行下载。
4. 使用下载的数据集进行机器人学习模型的训练和测试。
5. 参与AGIBOT WORLD社区,与其他研究人员和开发者交流经验。
6. 如有定制数据需求,可通过官方网站提交请求,获取企业级质量的定制数据。
7. 在研究或产品开发中取得进展后,可在AGIBOT WORLD平台上分享成果,促进学术交流和技术发展。
浏览量:39
最新流量情况
月访问量
7421
平均访问时长
00:02:02
每次访问页数
1.96
跳出率
56.23%
流量来源
直接访问
52.00%
自然搜索
25.88%
邮件
0.07%
外链引荐
11.24%
社交媒体
9.63%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
日本
3.56%
韩国
9.15%
美国
44.70%
越南
7.34%
大规模机器人学习数据集,推动多用途机器人策略发展。
AGIBOT WORLD是一个专为推进多用途机器人策略而设计的大规模机器人学习数据集。它包括基础模型、基准测试和一个生态系统,旨在为学术界和工业界提供高质量的机器人数据,为具身AI铺平道路。该数据集包含100多台机器人的100万条以上轨迹,覆盖100多个真实世界场景,涉及精细操控、工具使用和多机器人协作等任务。它采用尖端的多模态硬件,包括视觉触觉传感器、耐用的6自由度灵巧手和具有全身控制的移动双臂机器人,支持模仿学习、多智能体协作等研究。AGIBOT WORLD的目标是改变大规模机器人学习,推进可扩展的机器人系统生产,是一个开源平台,邀请研究人员和实践者共同塑造具身AI的未来。
通用型物理引擎,用于机器人学和物理AI应用
Genesis是一个全面物理仿真平台,专为机器人学、具身AI和物理AI应用设计。它是一个从头构建的通用物理引擎,能够模拟广泛的材料和物理现象。作为一个轻量级、超快速、Pythonic且用户友好的机器人仿真平台,它还具备强大的真实感渲染系统和将自然语言描述转换为各种数据模态的生成数据引擎。Genesis通过其核心物理引擎的集成,进一步增强了上层的生成代理框架,旨在为机器人学及其它领域实现全自动数据生成。
学习野外音频视觉数据的机器人操控
ManiWAV是一个研究项目,旨在通过野外的音频和视觉数据学习机器人操控技能。它通过收集人类演示的同步音频和视觉反馈,并通过相应的策略接口直接从演示中学习机器人操控策略。该模型展示了通过四个接触丰富的操控任务来证明其系统的能力,这些任务需要机器人被动地感知接触事件和模式,或主动地感知物体表面的材料和状态。此外,该系统还能够通过学习多样化的野外人类演示来泛化到未见过的野外环境中。
基于生成式模拟的自动机器人学习
RoboGen 是一款基于生成式模拟的自动机器人学习产品。它通过自动生成多样化的任务、场景和训练监督,实现大规模机器人技能学习。RoboGen 具备自主提出、生成、学习的能力,可以不断生成与各种任务和环境相关的技能演示。
用于人形机器人学习的通用基础模型
NVIDIA Project GR00T是一种通用基础模型,可在仿真和真实世界中改变人形机器人的学习方式。通过在NVIDIA GPU加速模拟中进行训练,GR00T使得人形机器人能够从少量的人类演示中通过模仿学习和NVIDIA Isaac Lab进行强化学习,并可从视频数据生成机器人动作。GR00T模型接受多模态指令和过去的交互作为输入,并输出机器人需要执行的动作。
开源机器人模拟平台,用于生成无限机器人数据和泛化AI。
ManiSkill是一个领先的开源平台,专注于机器人模拟、无限机器人数据生成和泛化机器人AI。由HillBot.ai领导,该平台支持通过状态和/或视觉输入快速训练机器人,与其它平台相比,ManiSkill/SAPIEN实现了10-100倍的视觉数据收集速度。它支持在GPU上并行模拟和渲染RGB-D,速度高达30,000+FPS。ManiSkill提供了40多种技能/任务和2000多个对象的预构建任务,拥有数百万帧的演示和密集的奖励函数,用户无需自己收集资产或设计任务,可以专注于算法开发。此外,它还支持在每个并行环境中同时模拟不同的对象和关节,训练泛化机器人策略/AI的时间从天缩短到分钟。ManiSkill易于使用,可以通过pip安装,并提供简单灵活的GUI以及所有功能的广泛文档。
为与人类安全共存而开发的创新双臂机器人机制
AMBIDEX是NAVER LABS开发的双臂机器人,旨在实现与人类的安全共存。该机器人具有强大的动力传递机制,同时保持轻便和灵活,满足坚韧和安全性的要求。AMBIDEX项目正在研究新的学习方式,使机器人能够学习人类的动作能力,以执行日常遇到的复杂任务。
为真实世界机器人提供最先进的机器学习模型、数据集和工具。
LeRobot 是一个旨在降低进入机器人领域的门槛,让每个人都能贡献并从共享数据集和预训练模型中受益的开源项目。它包含了在真实世界中经过验证的最先进的方法,特别关注模仿学习和强化学习。LeRobot 提供了一组预训练模型、带有人类收集演示的数据集和模拟环境,以便用户无需组装机器人即可开始。未来几周内,计划增加对最实惠和最有能力的真实世界机器人的支持。
数据标注专家 - 为您的训练数据集进行标注
数据标注专家是一个为您提供优质训练数据集的数据标注服务平台。我们拥有专业的团队、先进的标注工具和有效的方法论,致力于帮助您获得更好的训练数据集。我们的服务包括数据标注、算法调优、数据清洗等。无论您是需要图像标注、文本标注还是其他类型的标注,我们都可以满足您的需求。
机器人教学框架,无需在野机器人
通用操作接口(UMI)是一个数据收集和策略学习框架,允许直接将现场人类演示中的技能转移到可部署的机器人策略。UMI采用手持夹具与仔细的界面设计相结合,实现便携、低成本和信息丰富的数据收集,用于挑战性的双手和动态操作演示。为促进可部署的策略学习,UMI结合了精心设计的策略界面,具有推理时延迟匹配和相对轨迹动作表示。从而产生的学习策略与硬件无关,并且可以在多个机器人平台上部署。配备这些功能,UMI框架解锁了新的机器人操作功能,仅通过为每个任务更改训练数据,允许泛化的动态、双手、精确和长时间的行为,从而实现零次调整。我们通过全面的真实环境实验演示了UMI的通用性和有效性,其中仅通过使用各种人类演示进行训练的UMI策略,在面对新环境和对象时实现了零次调整的泛化。
首个说唱音乐生成数据集
RapBank是一个专注于说唱音乐的数据集,它从YouTube收集了大量说唱歌曲,并提供了一个精心设计的数据预处理流程。这个数据集对于音乐生成领域具有重要意义,因为它提供了大量的说唱音乐内容,可以用于训练和测试音乐生成模型。RapBank数据集包含94,164首歌曲链接,成功下载了92,371首歌曲,总时长达到5,586小时,覆盖84种不同的语言,其中英语歌曲的总时长最高,占总时长的大约三分之二。
模型和数据集的集合
Distil-Whisper是一个提供模型和数据集的平台,用户可以在该平台上访问各种预训练模型和数据集,并进行相关的应用和研究。该平台提供了丰富的模型和数据集资源,帮助用户快速开展自然语言处理和机器学习相关工作。
大规模城市环境中的机器人模拟交互平台。
GRUtopia是一个为各种机器人设计的交互式3D社会模拟平台,它通过模拟到现实(Sim2Real)的范式,为机器人学习提供了一个可行的路径。平台包含100k精细标注的交互场景,可以自由组合成城市规模的环境,覆盖89种不同的场景类别,为服务导向环境中通用机器人的部署提供了基础。此外,GRUtopia还包括一个由大型语言模型(LLM)驱动的NPC系统,负责社交互动、任务生成和分配,模拟了具身AI应用的社交场景。
用于双手操作的扩散基础模型
RDT-1B是一个参数量达到1B(目前最大)的模仿学习扩散变换器,预训练在超过1M(目前最大)的多机器人情节上。给定语言指令和多达三个视图的RGB图像,RDT可以预测接下来的64个机器人动作。RDT与几乎所有现代移动操作器兼容,包括单臂到双臂、关节到末端执行器、位置到速度,甚至包括轮式运动。该模型在6K+(最大的之一)自收集的双手情节上进行了微调,并部署在ALOHA双臂机器人上。它在灵巧性、零样本泛化能力和少样本学习方面达到了最先进的性能。
大规模图像编辑数据集
UltraEdit是一个大规模的图像编辑数据集,包含约400万份编辑样本,自动生成,基于指令的图像编辑。它通过利用大型语言模型(LLMs)的创造力和人类评估员的上下文编辑示例,提供了一个系统化的方法来生产大规模和高质量的图像编辑样本。UltraEdit的主要优点包括:1) 它通过利用大型语言模型的创造力和人类评估员的上下文编辑示例,提供了更广泛的编辑指令;2) 其数据源基于真实图像,包括照片和艺术作品,提供了更大的多样性和减少了偏见;3) 它还支持基于区域的编辑,通过高质量、自动生成的区域注释得到增强。
用于强化学习验证的数学问题数据集
RLVR-GSM-MATH-IF-Mixed-Constraints数据集是一个专注于数学问题的数据集,它包含了多种类型的数学问题和相应的解答,用于训练和验证强化学习模型。这个数据集的重要性在于它能够帮助开发更智能的教育辅助工具,提高学生解决数学问题的能力。产品背景信息显示,该数据集由allenai在Hugging Face平台上发布,包含了GSM8k和MATH两个子集,以及带有可验证约束的IF Prompts,适用于MIT License和ODC-BY license。
为机器人提供虚拟模拟和评估的先进世界模型。
1X 世界模型是一种机器学习程序,能够模拟世界如何响应机器人的行为。它基于视频生成和自动驾驶汽车世界模型的技术进步,为机器人提供了一个虚拟模拟器,能够预测未来的场景并评估机器人策略。这个模型不仅能够处理复杂的对象交互,如刚体、掉落物体的影响、部分可观察性、可变形物体和铰接物体,还能够在不断变化的环境中进行评估,这对于机器人技术的发展至关重要。
大规模多模态医学数据集
MedTrinity-25M是一个大规模多模态数据集,包含多粒度的医学注释。它由多位作者共同开发,旨在推动医学图像和文本处理领域的研究。数据集的构建包括数据提取、多粒度文本描述生成等步骤,支持多种医学图像分析任务,如视觉问答(VQA)、病理学图像分析等。
TOFU数据集为大型语言模型的虚构遗忘任务提供基准。
TOFU数据集包含根据不存在的200位作者虚构生成的问答对,用于评估大型语言模型在真实任务上的遗忘性能。该任务的目标是遗忘在各种遗忘集比例上经过微调的模型。该数据集采用问答格式,非常适合用于流行的聊天模型,如Llama2、Mistral或Qwen。但是,它也适用于任何其他大型语言模型。对应的代码库是针对Llama2聊天和Phi-1.5模型编写的,但可以轻松地适配到其他模型。
一个用于训练高性能奖励模型的开源数据集。
HelpSteer2是由NVIDIA发布的一个开源数据集,旨在支持训练能够对齐模型以使其更加有帮助、事实正确和连贯,同时在响应的复杂性和冗余度方面具有可调节性。该数据集与Scale AI合作创建,当与Llama 3 70B基础模型一起使用时,在RewardBench上达到了88.8%的表现,是截至2024年6月12日最佳的奖励模型之一。
上传数据,获取机器学习模型
Automated Machine Learning as a Service是一个提供自动化机器学习服务的网站。用户可以通过上传数据来获取他们的机器学习模型,该平台为用户提供了便捷的机器学习模型开发和部署流程。该平台还提供了丰富的功能和优势,包括简单易用的界面、自动化的模型训练和优化、灵活的定价策略等。用户可以根据自己的需求选择适合的定价方案,并在不同的场景中应用该机器学习模型。该产品的定位是为广大用户提供高效、便捷、灵活的机器学习解决方案。
AI聊天机器人,数据驱动
Chat Thing是一个AI聊天机器人平台,可以通过使用现有的数据,如Notion、上传文件、网站等,创建定制的ChatGPT聊天机器人。用户可以将Chat Thing的聊天机器人嵌入网站,或与Slack、WhatsApp等渠道连接。Chat Thing支持各种使用场景,包括客服支持、人力资源、金融规划、法律研究、学术研究、AI写作助手、营销广告、教育等。
表情包视觉标注数据集
emo-visual-data 是一个公开的表情包视觉标注数据集,它通过使用 glm-4v 和 step-free-api 项目完成的视觉标注,收集了5329个表情包。这个数据集可以用于训练和测试多模态大模型,对于理解图像内容和文本描述之间的关系具有重要意义。
大规模多语言文本数据集
allenai/tulu-3-sft-olmo-2-mixture是一个大规模的多语言数据集,包含了用于训练和微调语言模型的多样化文本样本。该数据集的重要性在于它为研究人员和开发者提供了丰富的语言资源,以改进和优化多语言AI模型的性能。产品背景信息包括其由多个来源的数据混合而成,适用于教育和研究领域,且遵循特定的许可协议。
智能语音生成与数据集
ClearCypherAI是一家总部位于美国的AI初创公司,致力于构建前沿的解决方案。我们的产品包括文本转语音(T2A)、语音转文本(A2T)和语音转语音(A2A),支持多语言、多模态、实时语音智能。我们还提供自然语言数据集、威胁评估、AI定制平台等服务。我们的产品具有高度定制性、先进的技术和优质的客户支持。
大规模文本数据集,用于偏好混合研究
OLMo 2 1124 7B Preference Mixture 是一个大规模的文本数据集,由 Hugging Face 提供,包含366.7k个生成对。该数据集用于训练和微调自然语言处理模型,特别是在偏好学习和用户意图理解方面。它结合了多个来源的数据,包括SFT混合数据、WildChat数据以及DaringAnteater数据,覆盖了广泛的语言使用场景和用户交互模式。
数据科学与机器学习云平台
Saturn Cloud是一个解决数据科学和机器学习所需复杂基础设施管理和扩展的云平台。它提供了使用R和Python进行数据科学的环境,支持GPU、Dask集群等功能。Saturn Cloud可以帮助数据科学家、数据科学领导者和软件工程师简化开发、部署和数据处理的流程。该产品提供不同的功能和定价计划以满足各种需求。
© 2025 AIbase 备案号:闽ICP备08105208号-14