业界首个超大规模混合 Mamba 推理模型,强推理能力。
混元T1 是腾讯推出的超大规模推理模型,基于强化学习技术,通过大量后训练显著提升推理能力。它在长文处理和上下文捕捉上表现突出,同时优化了计算资源的消耗,具备高效的推理能力。适用于各类推理任务,尤其在数学、逻辑推理等领域表现优异。该产品以深度学习为基础,结合实际反馈不断优化,适合科研、教育等多个领域的应用。
一款开源的14B参数量的数学模型,通过强化学习训练,性能卓越。
Light-R1-14B-DS 是由北京奇虎科技有限公司开发的开源数学模型。该模型基于 DeepSeek-R1-Distill-Qwen-14B 进行强化学习训练,在 AIME24 和 AIME25 数学竞赛基准测试中分别达到了 74.0 和 60.2 的高分,超越了许多 32B 参数量的模型。它在轻量级预算下成功实现了对已经长链推理微调模型的强化学习尝试,为开源社区提供了一个强大的数学模型工具。该模型的开源有助于推动自然语言处理在教育领域的应用,特别是数学问题解决方面,为研究人员和开发者提供了宝贵的研究基础和实践工具。
Light-R1 是一个专注于长链推理(Long COT)的开源项目,通过课程式 SFT、DPO 和 RL 提供从零开始的训练方法。
Light-R1 是一个由 Qihoo360 开发的开源项目,旨在通过课程式监督微调(SFT)、直接偏好优化(DPO)和强化学习(RL)训练长链推理模型。该项目通过去污染数据集和高效的训练方法,实现了从零开始的长链推理能力。其主要优点包括开源的训练数据、低成本的训练方式以及在数学推理领域的卓越性能。项目背景基于当前长链推理模型的训练需求,旨在提供一种透明且可复现的训练方法。项目目前免费开源,适合研究机构和开发者使用。
R1-Omni 是一个结合强化学习的全模态情绪识别模型,专注于提升多模态情绪识别的可解释性。
R1-Omni 是一个创新的多模态情绪识别模型,通过强化学习提升模型的推理能力和泛化能力。该模型基于 HumanOmni-0.5B 开发,专注于情绪识别任务,能够通过视觉和音频模态信息进行情绪分析。其主要优点包括强大的推理能力、显著提升的情绪识别性能以及在分布外数据上的出色表现。该模型适用于需要多模态理解的场景,如情感分析、智能客服等领域,具有重要的研究和应用价值。
Steiner 是一个基于合成数据训练的推理模型,旨在探索多种推理路径并自主验证。
Steiner 是由 Yichao 'Peak' Ji 开发的推理模型系列,专注于通过强化学习在合成数据上训练,能够在推理时探索多种路径并自主验证或回溯。该模型的目标是复现 OpenAI o1 的推理能力,并验证推理时的扩展曲线。Steiner-preview 是一个正在进行中的项目,其开源目的是为了分享知识并获取更多真实用户的反馈。尽管该模型在某些基准测试中表现出色,但尚未完全实现 OpenAI o1 的推理扩展能力,因此仍处于开发阶段。
NotaGen 是一个用于符号音乐生成的模型,采用大语言模型训练范式,专注于生成高质量古典乐谱。
NotaGen 是一款创新的符号音乐生成模型,通过预训练、微调和强化学习三个阶段提升音乐生成质量。它利用大语言模型技术,能够生成高质量的古典乐谱,为音乐创作带来新的可能性。该模型的主要优点包括高效生成、风格多样和高质量输出。它适用于音乐创作、教育和研究等领域,具有广泛的应用前景。
通过强化学习提升大型语言模型在开源软件演变中的推理能力
SWE-RL 是由 Facebook Research 提出的一种基于强化学习的大型语言模型推理技术,旨在利用开源软件演变数据提升模型在软件工程任务中的表现。该技术通过规则驱动的奖励机制,优化模型的推理能力,使其能够更好地理解和生成高质量的代码。SWE-RL 的主要优点在于其创新性的强化学习方法和对开源数据的有效利用,为软件工程领域带来了新的可能性。该技术目前处于研究阶段,尚未明确商业化定价,但其在提升开发效率和代码质量方面具有显著潜力。
MLGym是一个用于推进AI研究代理的新框架和基准。
MLGym是由Meta的GenAI团队和UCSB NLP团队开发的一个开源框架和基准,用于训练和评估AI研究代理。它通过提供多样化的AI研究任务,推动强化学习算法的发展,帮助研究人员在真实世界的研究场景中训练和评估模型。该框架支持多种任务,包括计算机视觉、自然语言处理和强化学习等领域,旨在为AI研究提供一个标准化的测试平台。
VLM-R1 是一个稳定且通用的强化视觉语言模型,专注于视觉理解任务。
VLM-R1 是一种基于强化学习的视觉语言模型,专注于视觉理解任务,如指代表达理解(Referring Expression Comprehension, REC)。该模型通过结合 R1(Reinforcement Learning)和 SFT(Supervised Fine-Tuning)方法,展示了在领域内和领域外数据上的出色性能。VLM-R1 的主要优点包括其稳定性和泛化能力,使其能够在多种视觉语言任务中表现出色。该模型基于 Qwen2.5-VL 构建,利用了先进的深度学习技术,如闪存注意力机制(Flash Attention 2),以提高计算效率。VLM-R1 旨在为视觉语言任务提供一种高效且可靠的解决方案,适用于需要精确视觉理解的应用场景。
NovaSky 是一个专注于代码生成和推理模型优化的人工智能技术平台。
NovaSky 是一个专注于提升代码生成和推理模型性能的人工智能技术平台。它通过创新的测试时扩展技术(如 S*)、强化学习蒸馏推理等技术,显著提升了非推理模型的性能,使其在代码生成领域表现出色。该平台致力于为开发者提供高效、低成本的模型训练和优化解决方案,帮助他们在编程任务中实现更高的效率和准确性。NovaSky 的技术背景源于 Sky Computing Lab @ Berkeley,具有强大的学术支持和前沿的技术研究基础。目前,NovaSky 提供多种模型优化方法,包括但不限于推理成本优化和模型蒸馏技术,满足不同开发者的需求。
AlphaMaze 是一款专注于视觉推理任务的解码器语言模型,旨在解决传统语言模型在视觉任务上的不足。
AlphaMaze 是一款专为解决视觉推理任务而设计的解码器语言模型。它通过针对迷宫解谜任务的训练,展示了语言模型在视觉推理方面的潜力。该模型基于 15 亿参数的 Qwen 模型构建,并通过监督微调(SFT)和强化学习(RL)进行训练。其主要优点在于能够将视觉任务转化为文本格式进行推理,从而弥补传统语言模型在空间理解上的不足。该模型的开发背景是提升 AI 在视觉任务上的表现,尤其是在需要逐步推理的场景中。目前,AlphaMaze 作为研究项目,暂未明确其商业化定价和市场定位。
HOMIE 是一种新型的人形机器人遥操作系统,集成人体运动捕捉与强化学习训练框架,用于实现精准的行走与操作任务。
HOMIE 是一种创新的人形机器人遥操作解决方案,旨在通过强化学习和低成本的外骨骼硬件系统,实现精准的行走与操作任务。该技术的重要性在于它解决了传统遥操作系统的低效性和不稳定性问题,通过人体运动捕捉和强化学习训练框架,使机器人能够更加自然地执行复杂的任务。其主要优点包括高效的任务完成能力、无需复杂的运动捕捉设备以及快速的训练时间。该产品主要面向机器人研究机构、制造业和物流行业,价格未明确公开,但其硬件系统成本较低,具有较高的性价比。
一个基于强化学习优化的大型语言模型,专注于数学问题解决能力的提升。
DeepScaleR-1.5B-Preview 是一个经过强化学习优化的大型语言模型,专注于提升数学问题解决能力。该模型通过分布式强化学习算法,显著提高了在长文本推理场景下的准确率。其主要优点包括高效的训练策略、显著的性能提升以及开源的灵活性。该模型由加州大学伯克利分校的 Sky Computing Lab 和 Berkeley AI Research 团队开发,旨在推动人工智能在教育领域的应用,尤其是在数学教育和竞赛数学领域。模型采用 MIT 开源许可,完全免费供研究人员和开发者使用。
低成本强化视觉语言模型的泛化能力,仅需不到3美元。
R1-V是一个专注于强化视觉语言模型(VLM)泛化能力的项目。它通过可验证奖励的强化学习(RLVR)技术,显著提升了VLM在视觉计数任务中的泛化能力,尤其是在分布外(OOD)测试中表现出色。该技术的重要性在于,它能够在极低的成本下(仅需2.62美元的训练成本),实现对大规模模型的高效优化,为视觉语言模型的实用化提供了新的思路。项目背景基于对现有VLM训练方法的改进,目标是通过创新的训练策略,提升模型在复杂视觉任务中的表现。R1-V的开源性质也使其成为研究者和开发者探索和应用先进VLM技术的重要资源。
Tülu 3 405B 是一个大规模开源语言模型,通过强化学习提升性能。
Tülu 3 405B 是由 Allen Institute for AI 开发的开源语言模型,具有 4050 亿参数。该模型通过创新的强化学习框架(RLVR)提升性能,尤其在数学和指令跟随任务中表现出色。它基于 Llama-405B 模型进行优化,采用监督微调、偏好优化等技术。Tülu 3 405B 的开源性质使其成为研究和开发领域的强大工具,适用于需要高性能语言模型的各种应用场景。
CUA 是一种能够通过图形界面与数字世界交互的通用接口。
Computer-Using Agent (CUA) 是 OpenAI 开发的一种先进的人工智能模型,结合了 GPT-4o 的视觉能力和通过强化学习的高级推理能力。它能够像人类一样与图形用户界面(GUI)交互,无需依赖特定操作系统的 API 或网络接口。CUA 的灵活性使其能够在多种数字环境中执行任务,如填写表单、浏览网页等。这一技术的出现标志着 AI 发展的下一步,为 AI 在日常工具中的应用开辟了新的可能性。CUA 目前处于研究预览阶段,通过 Operator 提供给美国的 Pro 用户使用。
DeepSeek-R1-Distill-Qwen-1.5B 是一款高效推理的开源语言模型,适用于多种自然语言处理任务。
DeepSeek-R1-Distill-Qwen-1.5B 是由 DeepSeek 团队开发的开源语言模型,基于 Qwen2.5 系列进行蒸馏优化。该模型通过大规模强化学习和数据蒸馏技术,显著提升了推理能力和性能,同时保持了较小的模型体积。它在多项基准测试中表现出色,尤其在数学、代码生成和推理任务中具有显著优势。该模型支持商业使用,并允许用户进行修改和衍生作品开发,适合研究机构和企业用于开发高性能的自然语言处理应用。
DeepSeek-R1-Distill-Qwen-7B 是一个开源的推理模型,专注于数学、代码和推理任务。
DeepSeek-R1-Distill-Qwen-7B 是一个经过强化学习优化的推理模型,基于 Qwen-7B 进行了蒸馏优化。它在数学、代码和推理任务上表现出色,能够生成高质量的推理链和解决方案。该模型通过大规模强化学习和数据蒸馏技术,显著提升了推理能力和效率,适用于需要复杂推理和逻辑分析的场景。
© 2025 AIbase 备案号:闽ICP备08105208号-14