数据驱动的框架,增强大型语言模型的工作流编排能力
WorkflowLLM是一个以数据为中心的框架,旨在增强大型语言模型(LLMs)在工作流编排方面的能力。核心是WorkflowBench,这是一个大规模的监督式微调数据集,包含来自83个应用、28个类别的1503个API的106763个样本。WorkflowLLM通过微调Llama-3.1-8B模型,创建了专门针对工作流编排任务优化的WorkflowLlama模型。实验结果表明,WorkflowLlama在编排复杂工作流方面表现出色,并且能够很好地泛化到未见过的API。
生成任何3D和4D场景的先进框架
GenXD是一个专注于3D和4D场景生成的框架,它利用日常生活中常见的相机和物体运动来联合研究一般的3D和4D生成。由于社区缺乏大规模的4D数据,GenXD首先提出了一个数据策划流程,从视频中获取相机姿态和物体运动强度。基于此流程,GenXD引入了一个大规模的现实世界4D场景数据集:CamVid-30K。通过利用所有3D和4D数据,GenXD框架能够生成任何3D或4D场景。它提出了多视图-时间模块,这些模块分离相机和物体运动,无缝地从3D和4D数据中学习。此外,GenXD还采用了掩码潜在条件,以支持多种条件视图。GenXD能够生成遵循相机轨迹的视频以及可以提升到3D表示的一致3D视图。它在各种现实世界和合成数据集上进行了广泛的评估,展示了GenXD在3D和4D生成方面与以前方法相比的有效性和多功能性。
自监督触觉表示,用于基于视觉的触觉传感。
Sparsh是一系列通过自监督算法(如MAE、DINO和JEPA)训练的通用触觉表示。它能够为DIGIT、Gelsight'17和Gelsight Mini生成有用的表示,并在TacBench提出的下游任务中大幅度超越端到端模型,同时能够为新下游任务的数据高效训练提供支持。Sparsh项目包含PyTorch实现、预训练模型和与Sparsh一起发布的数据集。
为机器人提供虚拟模拟和评估的先进世界模型。
1X 世界模型是一种机器学习程序,能够模拟世界如何响应机器人的行为。它基于视频生成和自动驾驶汽车世界模型的技术进步,为机器人提供了一个虚拟模拟器,能够预测未来的场景并评估机器人策略。这个模型不仅能够处理复杂的对象交互,如刚体、掉落物体的影响、部分可观察性、可变形物体和铰接物体,还能够在不断变化的环境中进行评估,这对于机器人技术的发展至关重要。
生成开放世界视频游戏的扩散变换模型
GameGen-O 是首个为生成开放世界视频游戏而定制的扩散变换模型。该模型通过模拟游戏引擎的多种特性,如创新角色、动态环境、复杂动作和多样化事件,实现了高质量、开放领域的生成。此外,它还提供了交互式可控性,允许游戏玩法模拟。GameGen-O 的开发涉及从零开始的全面数据收集和处理工作,包括构建首个开放世界视频游戏数据集(OGameData),通过专有的数据管道进行高效的排序、评分、过滤和解耦标题。这个强大且广泛的 OGameData 构成了模型训练过程的基础。
内容风格合成在文本到图像生成中的应用
CSGO是一个基于内容风格合成的文本到图像生成模型,它通过一个数据构建管道生成并自动清洗风格化数据三元组,构建了首个大规模的风格迁移数据集IMAGStyle,包含210k图像三元组。CSGO模型采用端到端训练,明确解耦内容和风格特征,通过独立特征注入实现。它实现了图像驱动的风格迁移、文本驱动的风格合成以及文本编辑驱动的风格合成,具有无需微调即可推理、保持原始文本到图像模型的生成能力、统一风格迁移和风格合成等优点。
大规模多模态医学数据集
MedTrinity-25M是一个大规模多模态数据集,包含多粒度的医学注释。它由多位作者共同开发,旨在推动医学图像和文本处理领域的研究。数据集的构建包括数据提取、多粒度文本描述生成等步骤,支持多种医学图像分析任务,如视觉问答(VQA)、病理学图像分析等。
一万亿Token和34亿张图像的多模态数据集
MINT-1T是由Salesforce AI开源的多模态数据集,包含一万亿个文本标记和34亿张图像,规模是现有开源数据集的10倍。它不仅包含HTML文档,还包括PDF文档和ArXiv论文,丰富了数据集的多样性。MINT-1T的数据集构建涉及多种来源的数据收集、处理和过滤步骤,确保了数据的高质量和多样性。
用于训练通用目标分割模型的视频数据集
SA-V Dataset是一个专为训练通用目标分割模型设计的开放世界视频数据集,包含51K个多样化视频和643K个时空分割掩模(masklets)。该数据集用于计算机视觉研究,允许在CC BY 4.0许可下使用。视频内容多样,包括地点、对象和场景等主题,掩模从建筑物等大规模对象到室内装饰等细节不等。
一种用于图像和视频的视觉分割基础模型。
Segment Anything Model 2 (SAM 2)是Meta公司AI研究部门FAIR推出的一个视觉分割模型,它通过简单的变换器架构和流式内存设计,实现实时视频处理。该模型通过用户交互构建了一个模型循环数据引擎,收集了迄今为止最大的视频分割数据集SA-V。SAM 2在该数据集上训练,提供了在广泛任务和视觉领域中的强大性能。
高性能语言模型基准测试数据集
DCLM-baseline是一个用于语言模型基准测试的预训练数据集,包含4T个token和3B个文档。它通过精心策划的数据清洗、过滤和去重步骤,从Common Crawl数据集中提取,旨在展示数据策划在训练高效语言模型中的重要性。该数据集仅供研究使用,不适用于生产环境或特定领域的模型训练,如代码和数学。
大规模图像描述数据集,提供超过16M的合成图像描述。
PixelProse是一个由tomg-group-umd创建的大规模数据集,它利用先进的视觉-语言模型Gemini 1.0 Pro Vision生成了超过1600万个详细的图像描述。这个数据集对于开发和改进图像到文本的转换技术具有重要意义,可以用于图像描述生成、视觉问答等任务。
表情包视觉标注数据集
emo-visual-data 是一个公开的表情包视觉标注数据集,它通过使用 glm-4v 和 step-free-api 项目完成的视觉标注,收集了5329个表情包。这个数据集可以用于训练和测试多模态大模型,对于理解图像内容和文本描述之间的关系具有重要意义。
生物医学领域的专业通用模型
UltraMedical项目旨在开发生物医学领域的专业通用模型,这些模型旨在回答与考试、临床场景和研究问题相关的问题,同时保持广泛的通用知识基础,以有效处理跨领域问题。通过使用先进的对齐技术,包括监督微调(SFT)、直接偏好优化(DPO)和赔率比偏好优化(ORPO),训练大型语言模型在UltraMedical数据集上,以创建强大且多功能的模型,有效服务于生物医学社区的需求。
高效的检索增强生成研究工具包
FlashRAG是一个Python工具包,用于检索增强生成(RAG)研究的复现和开发。它包括32个预处理的基准RAG数据集和12种最先进的RAG算法。FlashRAG提供了一个广泛且可定制的框架,包括检索器、重排器、生成器和压缩器等RAG场景所需的基本组件,允许灵活组装复杂流程。此外,FlashRAG还提供了高效的预处理阶段和优化的执行,支持vLLM、FastChat等工具加速LLM推理和向量索引管理。
一种用于生成超详细图像描述的模型,用于训练视觉语言模型。
ImageInWords (IIW) 是一个由人类参与的循环注释框架,用于策划超详细的图像描述,并生成一个新的数据集。该数据集通过评估自动化和人类并行(SxS)指标来实现最先进的结果。IIW 数据集在生成描述时,比以往的数据集和GPT-4V输出在多个维度上有了显著提升,包括可读性、全面性、特异性、幻觉和人类相似度。此外,使用IIW数据微调的模型在文本到图像生成和视觉语言推理方面表现出色,能够生成更接近原始图像的描述。
一个由真实世界用户与ChatGPT交互构成的语料库。
WildChat数据集是一个由100万真实世界用户与ChatGPT交互组成的语料库,特点是语言多样和用户提示的多样性。该数据集用于微调Meta的Llama-2,创建了WildLlama-7b-user-assistant聊天机器人,能够预测用户提示和助手回应。
一个公益项目,致力于帮助国内AI开发者快速、稳定的下载模型、数据集。
HuggingFace镜像站是一个非盈利性项目,旨在为国内的AI开发者提供一个快速且稳定的模型和数据集下载平台。通过优化下载过程,减少因网络问题导致的中断,它极大地提高了开发者的工作效率。该镜像站支持多种下载方式,包括网页直接下载、使用官方命令行工具huggingface-cli、本站开发的hfd下载工具以及通过设置环境变量来实现非侵入式下载。
© 2024 AIbase 备案号:闽ICP备08105208号-14