视频序列理解的GPU实现模型
PPLLaVA是一个高效的视频大型语言模型,它结合了细粒度视觉提示对齐、用户指令的卷积风格池化的视觉令牌压缩以及CLIP上下文扩展。该模型在VideoMME、MVBench、VideoChatGPT Bench和VideoQA Bench等数据集上建立了新的最先进结果,仅使用1024个视觉令牌,吞吐量提高了8倍。
Agent S:一个开放的代理框架,让计算机像人类一样使用计算机。
Agent S是一个开放的代理框架,旨在通过图形用户界面(GUI)实现与计算机的自主交互,通过自动化复杂多步骤任务来转变人机交互。它引入了经验增强的分层规划方法,利用在线网络知识和叙事记忆,从过去的交互中提取高级经验,将复杂任务分解为可管理的子任务,并使用情景记忆进行逐步指导,Agent S不断优化其行动并从经验中学习,实现适应性强且有效的任务规划。Agent S在OSWorld基准测试中的表现超过了基线9.37%的成功率(相对提高了83.6%),并在WindowsAgentArena基准测试中展示了广泛的通用性。
基于多模态大语言模型的可解释图像检测与定位
FakeShield是一个多模态框架,旨在解决图像检测和定位(IFDL)领域中的两个主要挑战:检测原理的黑箱性和在不同篡改方法间的有限泛化能力。FakeShield通过利用GPT-4o增强现有的IFDL数据集,创建了多模态篡改描述数据集(MMTD-Set),用于训练FakeShield的篡改分析能力。该框架包括领域标签引导的可解释检测模块(DTE-FDM)和定位模块(MFLM),能够处理各种类型的篡改检测解释,并实现由详细文本描述引导的定位。FakeShield在检测准确性和F1分数上优于其他方法,提供了一个可解释且优越的解决方案。
视频指令调优与合成数据研究
LLaVA-Video是一个专注于视频指令调优的大型多模态模型(LMMs),通过创建高质量的合成数据集LLaVA-Video-178K来解决从网络获取大量高质量原始数据的难题。该数据集包括详细的视频描述、开放式问答和多项选择问答等任务,旨在提高视频语言模型的理解和推理能力。LLaVA-Video模型在多个视频基准测试中表现出色,证明了其数据集的有效性。
前沿级多模态大型语言模型,实现视觉-语言任务的先进性能。
NVLM 1.0是一系列前沿级的多模态大型语言模型(LLMs),在视觉-语言任务上取得了与领先专有模型和开放访问模型相媲美的先进成果。值得注意的是,NVLM 1.0在多模态训练后,其文本性能甚至超过了其LLM主干模型。我们为社区开源了模型权重和代码。
高效扩展多模态大型语言模型至1000图像
LongLLaVA是一个多模态大型语言模型,通过混合架构高效扩展至1000图像,旨在提升图像处理和理解能力。该模型通过创新的架构设计,实现了在大规模图像数据上的有效学习和推理,对于图像识别、分类和分析等领域具有重要意义。
多模态大型语言模型设计空间探索
EAGLE是一个面向视觉中心的高分辨率多模态大型语言模型(LLM)系列,通过混合视觉编码器和不同输入分辨率来加强多模态LLM的感知能力。该模型包含基于通道连接的'CLIP+X'融合,适用于具有不同架构(ViT/ConvNets)和知识(检测/分割/OCR/SSL)的视觉专家。EAGLE模型家族支持超过1K的输入分辨率,并在多模态LLM基准测试中取得了优异的成绩,特别是在对分辨率敏感的任务上,如光学字符识别和文档理解。
视频理解与推理的免训练大型语言模型。
SlowFast-LLaVA是一个无需训练的多模态大型语言模型,专为视频理解和推理设计。它无需在任何数据上进行微调,就能在多种视频问答任务和基准测试中达到与最先进视频大型语言模型相当甚至更好的性能。
最新多模态检查点,提升语音理解能力。
Llama3-s v0.2 是 Homebrew Computer Company 开发的多模态检查点,专注于提升语音理解能力。该模型通过早期融合语义标记的方式,利用社区反馈进行改进,以简化模型结构,提高压缩效率,并实现一致的语音特征提取。Llama3-s v0.2 在多个语音理解基准测试中表现稳定,并提供了实时演示,允许用户亲自体验其功能。尽管模型仍在早期开发阶段,存在一些限制,如对音频压缩敏感、无法处理超过10秒的音频等,但团队计划在未来更新中解决这些问题。
一个正在训练中的开源语言模型,具备“听力”能力。
llama3-s是一个开放的、正在进行中的研究实验,旨在将基于文本的大型语言模型(LLM)扩展到具有原生“听力”能力。该项目使用Meta的Chameleon论文启发的技术,专注于令牌传递性,将声音令牌扩展到LLM的词汇表中,未来可能扩展到各种输入类型。作为一个开源科学实验,代码库和数据集都是公开的。
数学视觉指令调优模型
MAVIS是一个针对多模态大型语言模型(MLLMs)的数学视觉指令调优模型,主要通过改进视觉编码数学图表、图表-语言对齐和数学推理技能来增强MLLMs在视觉数学问题解决方面的能力。该模型包括两个新策划的数据集、一个数学视觉编码器和数学MLLM,通过三阶段训练范式在MathVerse基准测试中取得领先性能。
从语言到视觉的长上下文转换模型
LongVA是一个能够处理超过2000帧或超过200K视觉标记的长上下文转换模型。它在Video-MME中的表现在7B模型中处于领先地位。该模型基于CUDA 11.8和A100-SXM-80G进行了测试,并且可以通过Hugging Face平台进行快速启动和使用。
多粒度视觉指令调优的创新MLLM
MG-LLaVA是一个增强模型视觉处理能力的机器学习语言模型(MLLM),通过整合多粒度视觉流程,包括低分辨率、高分辨率和以对象为中心的特征。提出了一个额外的高分辨率视觉编码器来捕捉细节,并通过Conv-Gate融合网络与基础视觉特征融合。此外,通过离线检测器识别的边界框整合对象级特征,以进一步细化模型的对象识别能力。MG-LLaVA仅在公开可用的多模态数据上通过指令调优进行训练,展现出卓越的感知技能。
多模态和多任务模型训练框架
4M是一个用于训练多模态和多任务模型的框架,能够处理多种视觉任务,并且能够进行多模态条件生成。该模型通过实验分析展示了其在视觉任务上的通用性和可扩展性,为多模态学习在视觉和其他领域的进一步探索奠定了基础。
先进文本生成图像模型
Stable Diffusion 3是由Stability AI开发的最新文本生成图像模型,具有显著进步的图像保真度、多主体处理和文本匹配能力。利用多模态扩散变换器(MMDiT)架构,提供单独的图像和语言表示,支持API、下载和在线平台访问,适用于各种应用场景。
大型视频语言模型,提供视觉问答和视频字幕生成。
VideoLLaMA2-7B-Base 是由 DAMO-NLP-SG 开发的大型视频语言模型,专注于视频内容的理解与生成。该模型在视觉问答和视频字幕生成方面展现出卓越的性能,通过先进的空间时间建模和音频理解能力,为用户提供了一种新的视频内容分析工具。它基于 Transformer 架构,能够处理多模态数据,结合文本和视觉信息,生成准确且富有洞察力的输出。
表情包视觉标注数据集
emo-visual-data 是一个公开的表情包视觉标注数据集,它通过使用 glm-4v 和 step-free-api 项目完成的视觉标注,收集了5329个表情包。这个数据集可以用于训练和测试多模态大模型,对于理解图像内容和文本描述之间的关系具有重要意义。
基于llama3 8B的SOTA视觉模型
llama3v是一个基于Llama3 8B和siglip-so400m的SOTA(State of the Art,即最先进技术)视觉模型。它是一个开源的VLLM(视觉语言多模态学习模型),在Huggingface上提供模型权重,支持快速本地推理,并发布了推理代码。该模型结合了图像识别和文本生成,通过添加投影层将图像特征映射到LLaMA嵌入空间,以提高模型对图像的理解能力。
© 2024 AIbase 备案号:闽ICP备08105208号-14