需求人群:
"该产品主要面向需要高效信息检索和精准内容排序的企业用户,尤其是金融、科技、法律和专业服务领域的专业人士。它能够帮助企业解决知识库中信息冲突的问题,提高决策效率和准确性,同时为开发者提供强大的工具来优化现有的RAG系统。"
使用场景示例:
ClaimWise 使用该重排序器验证专利合法性,替换原有重排序器以提升性能
某财富500强银行利用该重排序器优化金融文档检索,提高信息准确性和决策效率
技术公司通过指令排序功能,优先展示内部技术文档,减少知识库中的信息冲突
产品特色:
支持自定义指令排序,可根据文档的新旧、来源、类型等进行优先级调整
在BEIR基准测试中表现卓越,尤其在多跳推理、金融领域和科学文献方面表现出色
提供免费试用,方便用户快速上手并评估效果
无缝集成到现有RAG系统,替换或增强现有重排序器
支持多种文档类型和数据源,适用于复杂的企业知识库环境
提供详细的API文档和代码示例,便于开发者快速集成
通过Contextual AI平台进一步优化,实现端到端的性能提升
使用教程:
1. 访问 https://app.contextual.ai/?signup=1 注册Contextual AI账户
2. 在Getting Started标签页中找到/rerank独立API
3. 根据文档需求编写自定义指令,如优先级、文档类型等
4. 将指令附加到查询中,提交给重排序器
5. 评估重排序结果,根据需要调整指令或优化知识库
6. 联系Contextual AI获取定制化支持或进一步优化建议
浏览量:86
最新流量情况
月访问量
36.53k
平均访问时长
00:01:28
每次访问页数
2.24
跳出率
44.13%
流量来源
直接访问
47.63%
自然搜索
32.78%
邮件
0.13%
外链引荐
8.55%
社交媒体
10.27%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
加拿大
4.94%
印度
6.83%
荷兰
10.86%
俄罗斯
11.68%
美国
41.00%
全球首个可遵循指令的重排序器,为企业级RAG系统提供精准信息排序
Contextual AI Reranker 是一款革命性的AI模型,专为解决企业级检索增强生成(RAG)系统中信息冲突和排序不准确的问题而设计。它能够根据用户提供的自然语言指令,对检索结果进行精准排序,确保最符合需求的信息优先展示。该产品基于先进的AI技术,经过行业标准BEIR基准测试和内部数据集验证,表现卓越。其主要优点包括高准确率、强大的指令遵循能力和灵活的定制化选项,适用于金融、技术、专业服务等多个领域。产品目前提供免费试用,并通过API形式接入,方便企业快速部署和使用。
开源的RAG应用日志工具
RAG-logger是一个为检索增强生成(Retrieval-Augmented Generation, RAG)应用设计的开源日志工具。它是一个轻量级的、针对RAG特定日志需求的开源替代方案,专注于为RAG应用提供全面的日志记录功能,包括查询跟踪、检索结果记录、LLM交互记录以及逐步性能监控。它采用基于JSON的日志格式,支持每日日志组织、自动文件管理和元数据丰富化。RAG-logger以其开源、轻量级和专注于RAG应用的特性,为开发者提供了一个有效的工具来监控和分析RAG应用的性能。
掌握RAG技术,提升AI生成内容的准确性和相关性。
Retrieval-Augmented Generation (RAG) 是一种前沿技术,通过整合外部知识源来增强生成模型的能力,提高生成内容的质量和可靠性。LangChain是一个强大的框架,专为构建和部署稳健的语言模型应用而设计。本教程系列将提供全面的、分步骤的指南,帮助您使用LangChain实现RAG,从基础RAG流程的介绍开始,逐步深入到查询转换、文档嵌入、路由机制、查询构建、索引策略、检索技术以及生成阶段,最终将所有概念整合到一个实际场景中,展示RAG的强大和灵活性。
统一高效的RAG检索微调和推理框架
RAG-Retrieval是一个全链路的RAG检索微调和推理框架,支持多种RAG Reranker模型的推理,包括向量模型、迟交互式模型和交互式模型。它提供了一个轻量级的Python库,使得用户能够以统一的方式调用不同的RAG排序模型,简化了排序模型的使用和部署。
一个集成了Django、Llamaindex和Google Drive的RAG应用框架。
Omakase RAG Orchestrator是一个旨在解决构建RAG应用时遇到的挑战的项目,它通过提供一个综合的Web应用程序和API来封装大型语言模型(LLMs)及其包装器。该项目整合了Django、Llamaindex和Google Drive,以提高应用的可用性、可扩展性和数据及用户访问管理。
一个适合学习、使用、自主扩展的RAG系统。
Easy-RAG是一个检索增强生成(RAG)系统,它不仅适合学习者了解和掌握RAG技术,同时也便于开发者使用和进行自主扩展。该系统通过集成知识图谱提取解析工具、rerank重新排序机制以及faiss向量数据库等技术,提高了检索效率和生成质量。
一个为RAG(检索增强生成)AI助手设计的React组件,可快速集成到Next.js应用中。
该产品是一个React组件,专为RAG(检索增强生成)AI助手设计。它结合了Upstash Vector进行相似性搜索、Together AI作为LLM(大型语言模型)以及Vercel AI SDK用于流式响应。这种组件化设计使得开发者可以快速将RAG能力集成到Next.js应用中,极大地简化了开发流程,同时提供了高度的可定制性。其主要优点包括响应式设计、支持流式响应、持久化聊天历史以及支持暗黑/浅色模式等。该组件主要面向需要在Web应用中集成智能聊天功能的开发者,尤其是那些使用Next.js框架的团队。它通过简化集成过程,降低了开发成本,同时提供了强大的功能。
基于RAG(Retrieval-Augmented Generation)技术的智能对话系统
RAG Web UI 是一个基于 RAG 技术的智能对话系统,它结合了文档检索和大型语言模型,能够为企业和个人提供基于知识库的智能问答服务。该系统采用前后端分离架构,支持多种文档格式(如 PDF、DOCX、Markdown、Text)的智能管理,包括自动分块和向量化处理。其对话引擎支持多轮对话和引用标注,能够提供精准的知识检索和生成服务。该系统还支持高性能向量数据库(如 ChromaDB、Qdrant)的灵活切换,具有良好的扩展性和性能优化。作为一种开源项目,它为开发者提供了丰富的技术实现和应用场景,适合用于构建企业级知识管理系统或智能客服平台。
多语言晚交互检索模型,支持嵌入和重排
Jina ColBERT v2是一个先进的晚交互检索模型,基于ColBERT架构构建,支持89种语言,并提供优越的检索性能、用户可控的输出维度和长达8192个token的文本处理能力。它在信息检索领域具有革命性的意义,通过晚交互评分近似于交叉编码器中的联合查询-文档注意力,同时保持了接近传统密集检索模型的推理效率。
AI驱动的反馈收集与优先级排序技术
Visionari是一款AI驱动的反馈收集与优先级排序工具,旨在帮助企业收集、分析并优先处理用户反馈,以塑造产品的未来。该产品通过集中化反馈、自动化收集、AI分析和反馈转化为功能等步骤,减少平台切换、节省时间、提升用户参与度,并增加透明度和信任。Visionari的背景信息显示,它能够减少因未验证用户反馈而导致的潜在损失,通过实际行业数据和研究,帮助企业避免在错误功能上浪费时间和金钱。
全面管理的AI搜索基础设施,支持RAG。
Ducky是一种全面管理的AI检索服务,专为那些需要快速准确结果的开发人员而设计。它支持语义搜索,包括检索增强生成(RAG),并且提供了简单明了的Python SDK,可以快速构建出色的搜索功能。
构建RAG驱动的内部工具
RagHost是一个提供简单API的服务,可以上传文档并进行查询。您可以在几分钟内构建一个内部工具,用于搜索文档或回答问题。RagHost使用检索增强生成技术,通过将上下文数据与问题一起提供给模型,从而为您的模型提供所需的上下文。您无需处理文档解析、分块和向量嵌入等复杂工作,我们为您完成。RagHost支持自定义的分块策略,并提供流式响应以确保用户获得及时的回答。我们正在开发公平定价策略,使您能够轻松使用RagHost而无需担心高额费用。
一个用于在网站上提问的Chrome扩展程序,支持本地运行和向量存储。
Site RAG 是一款 Chrome 扩展程序,旨在通过自然语言处理技术帮助用户在浏览网页时快速获取问题答案。它支持将当前页面内容作为上下文进行查询,还能将整个网站内容索引到向量数据库中,以便后续进行检索增强生成(RAG)。该产品完全在本地浏览器运行,确保用户数据安全,同时支持连接本地运行的 Ollama 实例进行推理。它主要面向需要快速从网页内容中提取信息的用户,如开发者、研究人员和学生。目前该产品免费提供,适合希望在浏览网页时获得即时帮助的用户。
开发者友好的RAG即服务。
Ragie是一款面向开发者的RAG(Retrieval-Augmented Generation)即服务产品,它通过易于使用的API和SDK,帮助开发者快速启动并实现生成式AI应用。Ragie具备高级功能,如LLM重排、摘要索引、实体提取等,确保提供精确可靠的信息。它还支持与Google Drive、Notion等流行数据源的直接连接,并支持自动同步,保持数据最新。Ragie由Craft Ventures领导,提供简单明了的定价策略,无需设置费用或隐藏成本。
快速、准确的生产级RAG管道
Vectorize是一个专注于将非结构化数据转化为优化的向量搜索索引的平台,专为检索增强生成(RAG)而设计。它通过连接内容管理系统、文件系统、CRM、协作工具等多种数据源,帮助用户创建提高生产力的辅助系统和创新的客户体验。Vectorize的主要优点包括易于使用、快速部署和高精度的搜索结果,适合需要处理大量数据并希望快速实现AI应用的企业。
一键式无服务器RAG平台
SciPhi是一个开源的端到端RAG平台,使构建、部署和优化系统变得简单。它提供直观的框架和抽象,可与LangChain等解决方案相比较。通过SciPhi,您可以轻松启动和扩展最好的RAG系统,并选择各种托管和远程提供商以满足您的需求。无论是自托管还是云部署选项都可用。
一站式RAG搜索SDK
Korvus是一个基于Postgres构建的搜索SDK,它将整个RAG(检索增强生成)流程统一到单一的数据库查询中。它提供了高性能、可定制的搜索能力,同时最小化了基础设施的考虑。Korvus利用PostgresML的pgml扩展和pgvector扩展,将RAG流程压缩在Postgres内部。它支持多语言SDK,包括Python、JavaScript、Rust和C,允许开发者无缝集成到现有的技术栈中。
开源本地RAG,集成ChatGPT和MCP能力
Minima是一个开源的、完全本地化的RAG(Retrieval-Augmented Generation)模型,具备与ChatGPT和MCP(Model Context Protocol)集成的能力。它支持三种模式:完全本地安装、通过ChatGPT查询本地文档以及使用Anthropic Claude查询本地文件。Minima的主要优点包括本地化处理数据,保护隐私,以及能够利用强大的语言模型来增强检索和生成任务。产品背景信息显示,Minima支持多种文件格式,并允许用户自定义配置以适应不同的使用场景。Minima是免费开源的,定位于需要本地化AI解决方案的开发者和企业。
企业级RAG优化模型,支持多语言
Command R+是一款先进的RAG优化模型,专为处理企业级工作负载而设计,首次在Microsoft Azure上推出。该模型具有128k令牌上下文窗口,提供最佳性能的先进检索增强生成(RAG)功能,支持10种关键语言的多语言覆盖,以及工具使用功能以自动化复杂的业务流程。定价为Command R+:$3.00/M输入令牌,$15.00/M输出令牌。该产品适用于各种企业场景,如金融、人力资源、销售、营销和客户支持等。
智能搜索API,提供高效信息检索。
RAG Search API是一个由thinkany.ai开发的智能搜索API,它利用RAG(Retrieval-Augmented Generation)技术,结合了检索和生成的特点,为用户提供高效、准确的信息检索服务。该API支持自定义配置,包括搜索数量、是否进行重排、过滤等,能够满足不同用户的需求。
SkyPilot RAG 是一个基于 SkyPilot 的检索增强生成系统,用于处理大规模法律文档搜索和分析。
SkyPilot RAG 是一个结合了向量搜索和大型语言模型的检索增强生成系统。它通过语义搜索和智能问答,为法律专业人士提供高效的信息检索和分析工具。该系统基于 SkyPilot 构建,能够管理基础设施并高效利用计算资源,支持在任何云环境或 Kubernetes 上部署。其主要优点包括高准确性、上下文感知能力和可追溯性,能够显著提高法律文档处理的效率和可靠性。
RAG-based LLM agents的Elo排名工具
RAGElo是一个工具集,使用Elo评分系统帮助选择最佳的基于检索增强生成(RAG)的大型语言模型(LLM)代理。随着生成性LLM在生产中的原型设计和整合变得更加容易,评估仍然是解决方案中最具有挑战性的部分。RAGElo通过比较不同RAG管道和提示对多个问题的答案,计算不同设置的排名,提供了一个良好的概览,了解哪些设置有效,哪些无效。
革命性的检索增强生成系统技术集合。
RAG_Techniques 是一个专注于检索增强生成(Retrieval-Augmented Generation, RAG)系统的技术集合,旨在提升系统的准确性、效率和上下文丰富性。它提供了一个前沿技术的中心,通过社区贡献和协作环境,推动RAG技术的发展和创新。
开源的RAG基础聊天工具,与文档对话。
kotaemon是一个开源的、基于RAG(Retrieval-Augmented Generation)模型的工具,旨在通过聊天界面与用户文档进行交互。它支持多种语言模型API提供商和本地语言模型,提供了一个干净、可定制的用户界面,适用于终端用户进行文档问答以及开发者构建自己的RAG问答流程。
基于RAG框架的可靠输入和可信输出系统
GoMate是一个基于Retrieval-Augmented Generation (RAG)框架的模型,专注于提供可靠输入和可信输出。它通过结合检索和生成技术,提高信息检索和文本生成的准确性和可靠性。GoMate适用于需要高效、准确信息处理的领域,如自然语言处理、知识问答等。
RAG-FiT是一个用于提升LLMs利用外部信息能力的库,通过特别创建的RAG增强数据集对模型进行微调。
RAG-FiT是一个强大的工具,旨在通过检索增强生成(RAG)技术提升大型语言模型(LLMs)的能力。它通过创建专门的RAG增强数据集,帮助模型更好地利用外部信息。该库支持从数据准备到模型训练、推理和评估的全流程操作。其主要优点包括模块化设计、可定制化工作流以及对多种RAG配置的支持。RAG-FiT基于开源许可,适合研究人员和开发者进行快速原型开发和实验。
开源的 RAG 框架
Embedchain 是一个开源的 RAG 框架,旨在简化 AI 应用的创建和部署。它以 “常规但可配置” 为设计原则,既适用于软件工程师,也适用于机器学习工程师。Embedchain 简化了 RAG 应用的创建过程,提供了一个无缝的管理各种非结构化数据的流程。它可以高效地将数据分成可管理的块,生成相关的嵌入,并将它们存储在矢量数据库中以实现优化的检索。借助各种多样的 API,它使用户能够提取上下文信息、找到精确的答案或参与交互式聊天对话,所有这些都根据他们自己的数据进行定制。
轻量级、快速的RAG文本分块库
Chonkie是一个为检索增强型生成(RAG)应用设计的文本分块库,它轻量级、快速,并且易于使用。该库提供了多种文本分块方法,支持多种分词器,并且具有高性能。Chonkie的主要优点包括丰富的功能、易用性、快速处理速度、广泛的支持和轻量级的设计。它适用于需要高效处理文本数据的开发者和研究人员,特别是在自然语言处理和机器学习领域。Chonkie是开源的,遵循MIT许可证,可以免费使用。
© 2025 AIbase 备案号:闽ICP备08105208号-14