需求人群:
["开发者:可以快速创建和定制AI应用程序","企业:能够利用现有数据生成业务解决方案","研究人员:可以探索和实验低代码AI应用的开发"]
使用场景示例:
创建一个能够回答关于特定数据集问题的聊天机器人
为企业提供定制化的AI解决方案,如客户服务自动化
教育领域中,开发能够辅助教学和回答学生问题的AI助教
产品特色:
生成聊天界面的Next.js前端应用
提供由llama-index Python包支持的Python FastAPI后端
后端包含单一端点,用于发送聊天状态并接收响应
支持用户数据索引,能够回答有关数据的问题
允许用户上传并索引支持的文件类型,如PDF、Word文档等
交互式模式快速启动应用程序
支持多种数据源选择,包括PDF、本地文件、网站内容等
使用教程:
1. 通过npm、yarn或pnpm命令行工具运行create-tsi
2. 根据提示输入项目名称和其他配置选项
3. 提供T-Systems API密钥或使用环境变量TSI_API_KEY
4. 选择所需的模型和嵌入模型
5. 选择数据源,如无数据则选择简单聊天
6. 生成的应用程序后,阅读生成的README.md文件以启动应用
浏览量:22
最新流量情况
月访问量
5.16m
平均访问时长
00:06:42
每次访问页数
5.81
跳出率
37.20%
流量来源
直接访问
52.27%
自然搜索
32.92%
邮件
0.05%
外链引荐
12.52%
社交媒体
2.15%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.99%
德国
3.63%
印度
9.20%
俄罗斯
5.25%
美国
19.02%
低代码生成AI应用程序的生成性AI RAG工具包。
create-tsi是一个生成性AI RAG(Retrieval-Augmented Generation)工具包,用于低代码生成AI应用程序。它利用LlamaIndex和T-Systems在Open Telekom Cloud上托管的大型语言模型(LLMs),简化了AI应用程序的创建过程,使其变得快捷、灵活。用户可以使用create-tsi生成聊天机器人、编写代理并针对特定用例进行定制。
革命性的检索增强生成系统技术集合。
RAG_Techniques 是一个专注于检索增强生成(Retrieval-Augmented Generation, RAG)系统的技术集合,旨在提升系统的准确性、效率和上下文丰富性。它提供了一个前沿技术的中心,通过社区贡献和协作环境,推动RAG技术的发展和创新。
一个全面的Prompt Engineering技术资源库
Prompt Engineering是人工智能领域的前沿技术,它改变了我们与AI技术的交互方式。这个开源项目旨在为初学者和经验丰富的实践者提供一个学习、构建和分享Prompt Engineering技术的平台。该项目包含了从基础到高级的各种示例,旨在促进Prompt Engineering领域的学习、实验和创新。此外,它还鼓励社区成员分享自己的创新技术,共同推动Prompt Engineering技术的发展。
一个可以本地与多个PDF文件进行对话的聊天机器人。
rag-chatbot是一个基于人工智能技术的聊天机器人模型,它能够让用户通过自然语言与多个PDF文件进行交互。该模型使用了最新的机器学习技术,如Huggingface和Ollama,来实现对PDF内容的理解和回答生成。它的重要性在于能够处理大量文档信息,为用户提供快速、准确的问答服务。产品背景信息表明,这是一个开源项目,旨在通过技术创新提升文档处理的效率。目前该项目是免费的,主要面向开发者和技术爱好者。
终端中的个人AI助手,具备本地工具。
gptme是一个运行在终端的个人AI助手,它装备了本地工具,可以编写代码、使用终端、浏览网页、视觉识别等。它是一个不受软件、互联网访问、超时或隐私问题限制的ChatGPT“代码解释器”的本地替代方案。
无需编码即可构建生产就绪的LLM应用程序
Epsilla是一个无需编码的RAG即服务(RAG-as-a-Service)平台,它允许用户基于私有或公共数据构建生产就绪的大型语言模型(Large Language Model, LLM)应用程序。该平台提供了一站式服务,包括数据管理、RAG工具、CI/CD风格的评估以及企业级安全措施,旨在降低总拥有成本(TCO),提高查询速度和吞吐量,同时确保信息的时效性和安全性。
本地语音聊天机器人,保护隐私,无需联网。
june是一个结合了Ollama、Hugging Face Transformers和Coqui TTS Toolkit的本地语音聊天机器人。它提供了一种灵活、注重隐私的解决方案,可以在本地机器上进行语音辅助交互,确保没有数据被发送到外部服务器。产品的主要优点包括无需联网即可使用、保护用户隐私、支持多种交互模式等。
用于微调Meta Llama模型的库和示例脚本集合
llama-recipes是Meta Llama模型的配套仓库,旨在提供一个可扩展的库,用于微调Meta Llama模型,并提供一些示例脚本和笔记本,以便快速开始使用模型在各种用例中,包括领域适应的微调和构建基于LLM的应用程序。
创建您自己的高级搜索引擎,结合AI技术。
Inquir是一个强大的工具,用于创建个性化的搜索引擎,根据您的数据量身定制。它解锁了诸如自定义搜索解决方案、数据组合、AI驱动的检索增强生成(RAG)系统以及上下文感知搜索功能等强大功能。通过启动您的引擎或安排演示,迈向改善用户体验的第一步。
轻量级、快速的RAG文本分块库
Chonkie是一个为检索增强型生成(RAG)应用设计的文本分块库,它轻量级、快速,并且易于使用。该库提供了多种文本分块方法,支持多种分词器,并且具有高性能。Chonkie的主要优点包括丰富的功能、易用性、快速处理速度、广泛的支持和轻量级的设计。它适用于需要高效处理文本数据的开发者和研究人员,特别是在自然语言处理和机器学习领域。Chonkie是开源的,遵循MIT许可证,可以免费使用。
Sidecar是Aide编辑器的AI大脑,与编辑器协同工作。
Sidecar是为Aide编辑器设计的人工智能插件,它在本地机器上与编辑器一起工作,负责创建提示、与大型语言模型(LLM)通信以及处理它们之间的所有交互。Sidecar的主要优点包括提高编程效率、智能代码补全和集成化的AI辅助开发。它基于Rust语言开发,确保了性能和安全性。Sidecar适用于需要在本地机器上进行高效编程和代码管理的开发者。
AI内容审核服务,保护下游部署安全。
Mistral Moderation API是Mistral AI推出的内容审核服务,旨在帮助用户检测和过滤不受欢迎的文本内容。该API是Le Chat中使用的审核服务的同一技术,现在对外开放,以便用户可以根据特定的应用和安全标准定制和使用这一工具。该模型是一个基于LLM(大型语言模型)的分类器,能够将文本输入分类到9个预定义的类别中。Mistral AI的这一API支持原生多语言,特别针对阿拉伯语、中文、英语、法语、德语、意大利语、日语、韩语、葡萄牙语、俄语和西班牙语进行了训练。该API的主要优点包括提高审核的可扩展性和鲁棒性,以及通过技术文档提供的详细政策定义和启动指南,帮助用户有效实施系统级的安全防护。
国内领先的LLM一站式企业解决方案
Chat Nio是一个国内领先的LLM(Large Language Model)一站式企业解决方案,提供强大的AI集成工具,支持35+主流AI模型,涵盖文本生成、图像创作、音频处理和视频编辑等领域,并支持私有化部署和中转服务。它为开发者、个人用户和企业提供定制化的AI解决方案,包括但不限于多租户令牌分发、计费管理系统、深度集成Midjourney Proxy Plus绘画功能、全方位调用日志记录系统等。Chat Nio以其多功能性、灵活性和易用性,满足企业和团队的多样化需求,帮助他们高效开发和部署AI应用。
基于Transformer的实时开放世界AI模型
Oasis是由Decart AI开发的首个可玩、实时、开放世界的AI模型,它是一个互动视频游戏,由Transformer端到端生成,基于逐帧生成。Oasis能够接收用户键盘和鼠标输入,实时生成游戏玩法,内部模拟物理、游戏规则和图形。该模型通过直接观察游戏玩法学习,允许用户移动、跳跃、拾取物品、破坏方块等。Oasis被视为研究更复杂交互世界的基础模型的第一步,未来可能取代传统的游戏引擎。Oasis的实现需要模型架构的改进和模型推理技术的突破,以实现用户与模型的实时交互。Decart AI采用了最新的扩散训练和Transformer模型方法,并结合了大型语言模型(LLMs)来训练一个自回归模型,该模型可以根据用户即时动作生成视频。此外,Decart AI还开发了专有的推理框架,以提供NVIDIA H100 Tensor Core GPU的峰值利用率,并支持Etched即将推出的Sohu芯片。
AI优先的基础设施API,提供搜索、推荐和RAG服务
Trieve是一个AI优先的基础设施API,结合了语言模型和工具,用于微调排名和相关性,提供一站式的搜索、推荐、RAG和分析解决方案。它能够自动持续改进,基于数十个反馈信号,确保相关性。Trieve支持语义向量搜索、BM25和SPlade全文搜索,以及混合搜索,结合全文搜索和语义向量搜索。此外,它还提供了商品推销和相关性调整功能,帮助用户通过API或无代码仪表板调整搜索结果以实现KPI。Trieve建立在最佳基础之上,使用开源嵌入模型和LLMs,运行在自己的服务器上,确保数据安全。
A tool for integrating private data with AI large language models.
Dabarqus是一个Retrieval Augmented Generation(RAG)框架,它允许用户将私有数据实时提供给大型语言模型(LLM)。这个工具通过提供REST API、SDKs和CLI工具,使得用户能够轻松地将各种数据源(如PDF、电子邮件和原始数据)存储到语义索引中,称为“记忆库”。Dabarqus支持LLM风格的提示,使用户能够以简单的方式与记忆库进行交互,而无需构建特殊的查询或学习新的查询语言。此外,Dabarqus还支持多语义索引(记忆库)的创建和使用,使得数据可以根据主题、类别或其他分组方式进行组织。Dabarqus的产品背景信息显示,它旨在简化私有数据与AI语言模型的集成过程,提高数据检索的效率和准确性。
快速、准确的生产级RAG管道
Vectorize是一个专注于将非结构化数据转化为优化的向量搜索索引的平台,专为检索增强生成(RAG)而设计。它通过连接内容管理系统、文件系统、CRM、协作工具等多种数据源,帮助用户创建提高生产力的辅助系统和创新的客户体验。Vectorize的主要优点包括易于使用、快速部署和高精度的搜索结果,适合需要处理大量数据并希望快速实现AI应用的企业。
一个全面的生成式AI代理开发和实现资源库
GenAI_Agents是一个开源的、面向生成式AI代理开发和实现的资源库。它提供了从基础到高级的教程和实现,旨在帮助开发者学习、构建和分享生成式AI代理。这个资源库不仅适合初学者,也适合经验丰富的从业者,通过提供丰富的示例和文档,促进学习和创新。
一个简单而强大的Python库,用于使用大型语言模型(LLMs)。
promptic是一个轻量级、基于装饰器的Python库,它通过litellm简化了与大型语言模型(LLMs)交互的过程。使用promptic,你可以轻松创建提示,处理输入参数,并从LLMs接收结构化输出,仅需几行代码。
AI提示工程师,优化大型语言模型应用
Weavel是一个AI提示工程师,它通过追踪、数据集管理、批量测试和评估等功能,帮助用户优化大型语言模型(LLM)的应用。Weavel与Weavel SDK结合使用,能够自动记录并添加LLM生成的数据到您的数据集中,实现无缝集成和针对特定用例的持续改进。此外,Weavel能够自动生成评估代码,并使用LLM作为复杂任务的公正裁判,简化评估流程,确保准确、细致的性能指标。
开发者友好的RAG即服务。
Ragie是一款面向开发者的RAG(Retrieval-Augmented Generation)即服务产品,它通过易于使用的API和SDK,帮助开发者快速启动并实现生成式AI应用。Ragie具备高级功能,如LLM重排、摘要索引、实体提取等,确保提供精确可靠的信息。它还支持与Google Drive、Notion等流行数据源的直接连接,并支持自动同步,保持数据最新。Ragie由Craft Ventures领导,提供简单明了的定价策略,无需设置费用或隐藏成本。
7.8亿参数的双语生成模型
EXAONE-3.0-7.8B-Instruct是LG AI Research开发的一款具有7.8亿参数的双语(英语和韩语)预训练生成模型。模型通过8T的精选token进行预训练,并经过监督式微调和直接偏好优化进行后训练,展现出与同类大小的开放模型相比极具竞争力的基准性能。
多语言对话生成模型
Meta Llama 3.1系列模型是一套预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B三种规模的模型,专为多语言对话使用案例优化,性能优于许多开源和闭源聊天模型。
AI代理工具集,赋能复杂任务处理。
Composio是一个为AI代理提供高质量工具和集成的平台,它简化了代理的认证、准确性和可靠性问题,使得开发者能够通过一行代码集成多种工具和框架。它支持100多种工具,覆盖了GitHub、Notion、Linear等90多个平台,提供了包括软件操作、操作系统交互、浏览器功能、搜索、软件开发环境(SWE)以及即席代理数据(RAG)等多种功能。Composio还支持六种不同的认证协议,能够显著提高代理调用工具的准确性。此外,Composio可以作为后端服务嵌入到应用程序中,为所有用户和代理管理认证和集成,保持一致的体验。
AI驱动的相册,自动生成图像元数据并与之对话。
Album AI是一个实验性项目,它使用gpt-4o-mini作为视觉模型,自动识别相册中图像文件的元数据,并利用RAG技术实现与相册的对话。它既可以作为传统相册使用,也可以作为图像知识库,辅助大型语言模型进行内容生成。
一站式RAG搜索SDK
Korvus是一个基于Postgres构建的搜索SDK,它将整个RAG(检索增强生成)流程统一到单一的数据库查询中。它提供了高性能、可定制的搜索能力,同时最小化了基础设施的考虑。Korvus利用PostgresML的pgml扩展和pgvector扩展,将RAG流程压缩在Postgres内部。它支持多语言SDK,包括Python、JavaScript、Rust和C,允许开发者无缝集成到现有的技术栈中。
低代码构建多Agent大模型应用的开发工具
LazyLLM是一个致力于简化人工智能应用构建流程的开发工具,它通过提供低代码的解决方案,使得开发者即使不了解大模型也能轻松组装包含多个Agent的AI应用。LazyLLM支持一键部署所有模块,跨平台兼容,自动进行网格搜索参数优化,以及高效的模型微调,从而提升应用效果。
集成大型语言模型的SDK
Semantic Kernel是一个集成了大型语言模型(LLMs)如OpenAI、Azure OpenAI和Hugging Face的软件开发工具包(SDK),它允许开发者通过定义可串联的插件,在几行代码内实现与AI的交互。其特色在于能够自动编排AI插件,使用户能够通过LLM生成实现特定目标的计划,并由Semantic Kernel执行该计划。
© 2024 AIbase 备案号:闽ICP备08105208号-14