一个全面的Prompt Engineering技术资源库
Prompt Engineering是人工智能领域的前沿技术,它改变了我们与AI技术的交互方式。这个开源项目旨在为初学者和经验丰富的实践者提供一个学习、构建和分享Prompt Engineering技术的平台。该项目包含了从基础到高级的各种示例,旨在促进Prompt Engineering领域的学习、实验和创新。此外,它还鼓励社区成员分享自己的创新技术,共同推动Prompt Engineering技术的发展。
一个全面的生成式AI代理开发和实现资源库
GenAI_Agents是一个开源的、面向生成式AI代理开发和实现的资源库。它提供了从基础到高级的教程和实现,旨在帮助开发者学习、构建和分享生成式AI代理。这个资源库不仅适合初学者,也适合经验丰富的从业者,通过提供丰富的示例和文档,促进学习和创新。
全栈式虚拟人多场景应用服务
讯飞虚拟人利用最新的AI虚拟形象技术,结合语音识别、语义理解、语音合成、NLP、星火大模型等AI核心技术,提供虚拟人形象资产构建、AI驱动、多模态交互的多场景虚拟人产品服务。一站式虚拟人音视频内容生产,AIGC助力创作灵活高效;在虚拟'AI演播室'中输入文本或录音,一键完成音、视频作品的输出,3分钟内渲染出稿。
革命性的检索增强生成系统技术集合。
RAG_Techniques 是一个专注于检索增强生成(Retrieval-Augmented Generation, RAG)系统的技术集合,旨在提升系统的准确性、效率和上下文丰富性。它提供了一个前沿技术的中心,通过社区贡献和协作环境,推动RAG技术的发展和创新。
7.8亿参数的双语生成模型
EXAONE-3.0-7.8B-Instruct是LG AI Research开发的一款具有7.8亿参数的双语(英语和韩语)预训练生成模型。模型通过8T的精选token进行预训练,并经过监督式微调和直接偏好优化进行后训练,展现出与同类大小的开放模型相比极具竞争力的基准性能。
多语言对话生成模型
Meta Llama 3.1系列模型是一套预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B三种规模的模型,专为多语言对话使用案例优化,性能优于许多开源和闭源聊天模型。
依托AI与NLP的文本自动查错与智能纠错系统。
无忧智能审核系统是一款基于大数据、人工智能(AI)和自然语言处理技术(NLP)的文本自动查错与智能纠错系统。它通过深度学习能够全面校对多种文本错误类型,有效提升人工检校效率,消除审校盲区,提升内容安全和文本质量。系统支持多种部署方式,包括嵌入版、整站审核和接口版,能够满足不同行业和场景的需求。
低代码生成AI应用程序的生成性AI RAG工具包。
create-tsi是一个生成性AI RAG(Retrieval-Augmented Generation)工具包,用于低代码生成AI应用程序。它利用LlamaIndex和T-Systems在Open Telekom Cloud上托管的大型语言模型(LLMs),简化了AI应用程序的创建过程,使其变得快捷、灵活。用户可以使用create-tsi生成聊天机器人、编写代理并针对特定用例进行定制。
构建定制的大型语言模型(LLM)以增强聊天机器人的能力。
ChatRTX 是 NVIDIA 提供的一个用于构建定制大型语言模型(LLM)的平台,旨在提升聊天机器人的智能水平和交互能力。它利用先进的 AI 技术,通过理解自然语言处理(NLP)来提供更加人性化的对话体验。ChatRTX 的主要优点包括高度的可定制性、强大的语言理解能力和高效的交互设计,适合需要高级对话系统的各种商业应用。
构建最好的中文Llama大模型,完全开源可商用。
Llama中文社区是一个专注于Llama模型在中文方面的优化和上层建设的技术社区。社区提供基于大规模中文数据的预训练模型,并对Llama2和Llama3模型进行持续的中文能力迭代升级。社区拥有高级工程师团队支持,丰富的社区活动,以及开放共享的合作环境,旨在推动中文自然语言处理技术的发展。
基于Pile数据集训练的T5模型
Pile-T5是EleutherAI推出的一款自然语言处理模型,它在原有的T5模型基础上,采用了Pile数据集和LLAMA分词器进行训练,以改善对代码任务的理解能力。该模型经过了2万亿个token的训练,是原T5模型训练量的两倍。Pile-T5在多项下游任务中表现出色,尤其是在代码相关任务上。此外,EleutherAI还提供了中间检查点,以便研究人员研究模型随时间的演变。
转录、研究、数据分析和NLP软件
Speak Ai是一款AI驱动的转录、研究、数据分析和NLP软件,帮助营销和研究团队将非结构化的音频、视频和文本转化为竞争优势。它提供自动转录、会议助手、数据可视化等功能,帮助用户节省时间、提高效率。
生成合成数据,训练和对齐模型的工具
DataDreamer是一个强大的开源Python库,用于提示、生成合成数据和训练工作流。它旨在简单易用,极其高效,且具有研究级质量。DataDreamer支持创建提示工作流、生成合成数据集、对齐模型、微调模型、指令调优模型和模型蒸馏。它具有简单、研究级、高效、可复现的特点,并简化了数据集和模型的共享。
Karpathy推出的用于BPE算法的简洁代码项目
minbpe项目旨在为LLM中常用的BPE算法创建干净、教育性的代码实现。该项目提供了两种Tokenizer,实现了BPE算法的训练、编码、解码等主要功能,代码简洁易读,为用户提供便捷高效的使用体验。该项目展现出巨大的关注度和吸引力,相信其会对LLM和自然语言处理技术的发展起到重要作用。
AIWaves是一个AI软件公司,提供AI产品和服务。
AIWaves是一个总部位于杭州的AI初创公司,专注于将大型语言模型应用于互联网场景。公司以「实现AGI,让人类生活变得更美好」作为长期使命,以成为「全球第一的AI内容平台」为愿景,致力于重新定义未来内容创作和消费范式。公司主要产品有:对话机器人波形Bot、AI写作助手蛙蛙故事、开源工具包Agents等。这些产品可广泛应用于电商、游戏、医疗、教育等领域,为用户提供更优质的内容和服务。
预训练T5模型,采用段落破坏和替换标记检测
SpacTor是一种新的训练程序,包括(1)结合了段落破坏(SC)和标记替换检测(RTD)的混合目标,以及(2)一个两阶段课程,该课程在初始tau次迭代中优化混合目标,然后过渡到标准的SC损失。我们在多种NLP任务上进行了实验,使用编码器-解码器架构(T5),SpacTor-T5在下游性能方面与标准的SC预训练相当,同时减少了50%的预训练迭代次数和40%的总FLOPs。另外,在相同的计算预算下,我们发现SpacTor能够显著提高下游基准性能。
开源文本到图像生成模型
aMUSEd是一个开源平台,提供各种自然语言处理(NLP)模型、数据集和工具。其中包括aMUSEd,一个基于MUSE的轻量级遮蔽图像模型(MIM),用于文本到图像的生成。相比于潜在扩散(latent diffusion),MIM需要更少的推理步骤并且更易解释。此外,MIM可以通过仅有一张图片进行微调以学习额外的风格。aMUSEd还提供了两个模型的检查点,可以直接生成256x256和512x512分辨率的图像。
© 2024 AIbase 备案号:闽ICP备08105208号-14