需求人群:
["应用于基于Transformer的语言模型中","用作BERT等模型的分词器"]
使用场景示例:
用minbpe对文本进行BPE编码
使用minbpe实现自定义BPE分词器
minbpe可用于自己训练语言模型
产品特色:
实现BPE算法的训练
实现文本的BPE编码
实现BPE编码的文本解码
提供可保存和加载的功能
浏览量:81
最新流量情况
月访问量
4.75m
平均访问时长
00:06:34
每次访问页数
6.10
跳出率
36.20%
流量来源
直接访问
52.19%
自然搜索
32.64%
邮件
0.04%
外链引荐
12.93%
社交媒体
2.02%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.32%
德国
3.68%
印度
9.04%
俄罗斯
3.92%
美国
19.25%
Karpathy推出的用于BPE算法的简洁代码项目
minbpe项目旨在为LLM中常用的BPE算法创建干净、教育性的代码实现。该项目提供了两种Tokenizer,实现了BPE算法的训练、编码、解码等主要功能,代码简洁易读,为用户提供便捷高效的使用体验。该项目展现出巨大的关注度和吸引力,相信其会对LLM和自然语言处理技术的发展起到重要作用。
低代码生成AI应用程序的生成性AI RAG工具包。
create-tsi是一个生成性AI RAG(Retrieval-Augmented Generation)工具包,用于低代码生成AI应用程序。它利用LlamaIndex和T-Systems在Open Telekom Cloud上托管的大型语言模型(LLMs),简化了AI应用程序的创建过程,使其变得快捷、灵活。用户可以使用create-tsi生成聊天机器人、编写代理并针对特定用例进行定制。
QwQ-32B 是一款强大的推理模型,专为复杂问题解决和文本生成设计,性能卓越。
QwQ-32B 是 Qwen 系列的推理模型,专注于复杂问题的思考和推理能力。它在下游任务中表现出色,尤其是在解决难题方面。该模型基于 Qwen2.5 架构,经过预训练和强化学习优化,具有 325 亿参数,支持 131072 个完整上下文长度的处理能力。其主要优点包括强大的推理能力、高效的长文本处理能力和灵活的部署选项。该模型适用于需要深度思考和复杂推理的场景,如学术研究、编程辅助和创意写作等。
一种用于可变多层透明图像生成的匿名区域变换器技术。
ART 是一种基于深度学习的图像生成技术,专注于生成可变多层透明图像。它通过匿名区域布局和 Transformer 架构,实现了高效的多层图像生成。该技术的主要优点包括高效性、灵活性以及对多层图像生成的支持。它适用于需要精确控制图像层的场景,如图形设计、视觉特效等领域。目前未明确提及价格和具体定位,但其技术特性表明它可能面向专业用户和企业级应用。
MoBA 是一种用于长文本上下文的混合块注意力机制,旨在提升大语言模型的效率。
MoBA(Mixture of Block Attention)是一种创新的注意力机制,专为长文本上下文的大语言模型设计。它通过将上下文划分为块,并让每个查询令牌学习关注最相关的块,从而实现高效的长序列处理。MoBA 的主要优点是能够在全注意力和稀疏注意力之间无缝切换,既保证了性能,又提高了计算效率。该技术适用于需要处理长文本的任务,如文档分析、代码生成等,能够显著降低计算成本,同时保持模型的高性能表现。MoBA 的开源实现为研究人员和开发者提供了强大的工具,推动了大语言模型在长文本处理领域的应用。
Janus-Pro-1B 是一个统一多模态理解和生成的自回归框架。
Janus-Pro-1B 是一个创新的多模态模型,专注于统一多模态理解和生成。它通过分离视觉编码路径,解决了传统方法在理解和生成任务中的冲突问题,同时保持了单个统一的 Transformer 架构。这种设计不仅提高了模型的灵活性,还使其在多模态任务中表现出色,甚至超越了特定任务的模型。该模型基于 DeepSeek-LLM-1.5b-base/DeepSeek-LLM-7b-base 构建,使用 SigLIP-L 作为视觉编码器,支持 384x384 的图像输入,并采用特定的图像生成 tokenizer。其开源性和灵活性使其成为下一代多模态模型的有力候选。
基于Transformer实现的ViTPose模型集合
ViTPose是一系列基于Transformer架构的人体姿态估计模型。它利用Transformer的强大特征提取能力,为人体姿态估计任务提供了简单而有效的基线。ViTPose模型在多个数据集上表现出色,具有较高的准确性和效率。该模型由悉尼大学社区维护和更新,提供了多种不同规模的版本,以满足不同应用场景的需求。在Hugging Face平台上,ViTPose模型以开源的形式供用户使用,用户可以方便地下载和部署这些模型,进行人体姿态估计相关的研究和应用开发。
高性能的双向编码器Transformer模型
ModernBERT-large是一个现代化的双向编码器Transformer模型(BERT风格),在2万亿个英文和代码数据上预训练,具有长达8192个token的原生上下文长度。该模型采用了最新的架构改进,如旋转位置嵌入(RoPE)以支持长上下文,局部-全局交替注意力以提高长输入的效率,以及无填充和Flash Attention以提高推理效率。ModernBERT-long适合处理需要处理长文档的任务,如检索、分类和大型语料库中的语义搜索。模型训练数据主要是英文和代码,因此可能在其他语言上的表现会较低。
ModernBERT是新一代的编码器模型,性能卓越。
ModernBERT是由Answer.AI和LightOn共同发布的新一代编码器模型,它是BERT模型的全面升级版,提供了更长的序列长度、更好的下游性能和更快的处理速度。ModernBERT采用了最新的Transformer架构改进,特别关注效率,并使用了现代数据规模和来源进行训练。作为编码器模型,ModernBERT在各种自然语言处理任务中表现出色,尤其是在代码搜索和理解方面。它提供了基础版(139M参数)和大型版(395M参数)两种模型尺寸,适合各种规模的应用需求。
多语言预训练数据集
FineWeb2是由Hugging Face提供的一个大规模多语言预训练数据集,覆盖超过1000种语言。该数据集经过精心设计,用于支持自然语言处理(NLP)模型的预训练和微调,特别是在多种语言上。它以其高质量、大规模和多样性而闻名,能够帮助模型学习跨语言的通用特征,提升在特定语言任务上的表现。FineWeb2在多个语言的预训练数据集中表现出色,甚至在某些情况下,比一些专门为单一语言设计的数据库表现更好。
70亿参数的多语言大型语言模型
Llama-3.3-70B-Instruct是由Meta开发的一个70亿参数的大型语言模型,专门针对多语言对话场景进行了优化。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来提高其有用性和安全性。它支持多种语言,并能够处理文本生成任务,是自然语言处理领域的一项重要技术。
高性能的英文学术基准语言模型
OLMo 2 13B是由Allen Institute for AI (Ai2)开发的一款基于Transformer的自回归语言模型,专注于英文学术基准测试。该模型在训练过程中使用了高达5万亿个token,展现出与同等规模的全开放模型相媲美或更优的性能,并在英语学术基准上与Meta和Mistral的开放权重模型竞争。OLMo 2 13B的发布包括所有代码、检查点、日志和相关的训练细节,旨在推动语言模型的科学研究。
高效长序列大型语言模型推理技术
Star-Attention是NVIDIA提出的一种新型块稀疏注意力机制,旨在提高基于Transformer的大型语言模型(LLM)在长序列上的推理效率。该技术通过两个阶段的操作显著提高了推理速度,同时保持了95-100%的准确率。它与大多数基于Transformer的LLM兼容,无需额外训练或微调即可直接使用,并且可以与其他优化方法如Flash Attention和KV缓存压缩技术结合使用,进一步提升性能。
快速高效的非结构化数据提取工具
Extractous是一个用Rust编写的非结构化数据提取工具,提供多语言绑定。它专注于从各种文件类型(如PDF、Word、HTML等)中提取内容和元数据,并且性能优异,内存占用低。Extractous通过原生代码执行实现快速处理速度和低内存使用,支持多种文件格式,并集成了Apache Tika和tesseract-ocr技术,使其能够处理广泛的文件类型并进行OCR识别。该工具的开源性质和Apache 2.0许可使其可以免费用于商业用途,适合需要处理大量文档数据的企业和开发者。
Meta 开发的子十亿参数语言模型,适用于设备端应用。
Meta 开发的自回归语言模型,采用优化架构,适合资源受限设备。优点多,如集成多种技术,支持零样本推理等,价格免费,面向自然语言处理研究人员和开发者。
高效优化的600M参数语言模型,专为设备端应用设计。
MobileLLM-600M是由Meta开发的自回归语言模型,采用了优化的Transformer架构,专为资源受限的设备端应用而设计。该模型集成了SwiGLU激活函数、深度薄架构、嵌入共享和分组查询注意力等关键技术。MobileLLM-600M在零样本常识推理任务上取得了显著的性能提升,与之前的125M/350M SoTA模型相比,分别提高了2.7%/4.3%的准确率。该模型的设计理念可扩展至更大模型,如MobileLLM-1B/1.5B,均取得了SoTA结果。
高效优化的子十亿参数语言模型,专为设备端应用设计
MobileLLM-350M是由Meta开发的自回归语言模型,采用优化的Transformer架构,专为设备端应用设计,以满足资源受限的环境。该模型整合了SwiGLU激活函数、深层薄架构、嵌入共享和分组查询注意力等关键技术,实现了在零样本常识推理任务上的显著准确率提升。MobileLLM-350M在保持较小模型尺寸的同时,提供了与更大模型相媲美的性能,是设备端自然语言处理应用的理想选择。
基于Transformer的实时开放世界AI模型
Oasis是由Decart AI开发的首个可玩、实时、开放世界的AI模型,它是一个互动视频游戏,由Transformer端到端生成,基于逐帧生成。Oasis能够接收用户键盘和鼠标输入,实时生成游戏玩法,内部模拟物理、游戏规则和图形。该模型通过直接观察游戏玩法学习,允许用户移动、跳跃、拾取物品、破坏方块等。Oasis被视为研究更复杂交互世界的基础模型的第一步,未来可能取代传统的游戏引擎。Oasis的实现需要模型架构的改进和模型推理技术的突破,以实现用户与模型的实时交互。Decart AI采用了最新的扩散训练和Transformer模型方法,并结合了大型语言模型(LLMs)来训练一个自回归模型,该模型可以根据用户即时动作生成视频。此外,Decart AI还开发了专有的推理框架,以提供NVIDIA H100 Tensor Core GPU的峰值利用率,并支持Etched即将推出的Sohu芯片。
一个全面的Prompt Engineering技术资源库
Prompt Engineering是人工智能领域的前沿技术,它改变了我们与AI技术的交互方式。这个开源项目旨在为初学者和经验丰富的实践者提供一个学习、构建和分享Prompt Engineering技术的平台。该项目包含了从基础到高级的各种示例,旨在促进Prompt Engineering领域的学习、实验和创新。此外,它还鼓励社区成员分享自己的创新技术,共同推动Prompt Engineering技术的发展。
小型语言模型调研、测量与洞察
SLM_Survey是一个专注于小型语言模型(SLMs)的研究项目,旨在通过调研和测量,提供对这些模型的深入了解和技术评估。该项目涵盖了基于Transformer的、仅解码器的语言模型,参数范围在100M至5B之间。通过对59个最先进的开源SLMs进行调研,分析了它们的技术创新,并在多个领域评估了它们的能力,包括常识推理、上下文学习、数学和编程。此外,还对它们的运行时成本进行了基准测试,包括推理延迟和内存占用。这些研究对于推动SLMs领域的研究具有重要价值。
全能的创造者和编辑器,通过扩散变换遵循指令
ACE是一个基于扩散变换的全能创造者和编辑器,它能够通过统一的条件格式Long-context Condition Unit (LCU)输入,实现多种视觉生成任务的联合训练。ACE通过高效的数据收集方法解决了训练数据缺乏的问题,并通过多模态大型语言模型生成准确的文本指令。ACE在视觉生成领域具有显著的性能优势,可以轻松构建响应任何图像创建请求的聊天系统,避免了视觉代理通常采用的繁琐流程。
一个全面的生成式AI代理开发和实现资源库
GenAI_Agents是一个开源的、面向生成式AI代理开发和实现的资源库。它提供了从基础到高级的教程和实现,旨在帮助开发者学习、构建和分享生成式AI代理。这个资源库不仅适合初学者,也适合经验丰富的从业者,通过提供丰富的示例和文档,促进学习和创新。
多语言大型语言模型
Llama-3.2-1B是由Meta公司发布的多语言大型语言模型,专注于文本生成任务。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)进行调优,以符合人类对有用性和安全性的偏好。该模型支持8种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语,并在多种对话使用案例中表现优异。
全栈式虚拟人多场景应用服务
讯飞虚拟人利用最新的AI虚拟形象技术,结合语音识别、语义理解、语音合成、NLP、星火大模型等AI核心技术,提供虚拟人形象资产构建、AI驱动、多模态交互的多场景虚拟人产品服务。一站式虚拟人音视频内容生产,AIGC助力创作灵活高效;在虚拟'AI演播室'中输入文本或录音,一键完成音、视频作品的输出,3分钟内渲染出稿。
开源时空基础模型,用于交通预测
OpenCity是一个开源的时空基础模型,专注于交通预测领域。该模型通过整合Transformer架构和图神经网络,有效捕捉和标准化交通数据中的复杂时空依赖关系,实现对不同城市环境的零样本泛化。它在大规模、异构的交通数据集上进行预训练,学习到丰富、可泛化的表示,能够无缝应用于多种交通预测场景。
革命性的检索增强生成系统技术集合。
RAG_Techniques 是一个专注于检索增强生成(Retrieval-Augmented Generation, RAG)系统的技术集合,旨在提升系统的准确性、效率和上下文丰富性。它提供了一个前沿技术的中心,通过社区贡献和协作环境,推动RAG技术的发展和创新。
生成高质量中文方言语音的大规模文本到语音模型。
Bailing-TTS是由Giant Network的AI Lab开发的大型文本到语音(TTS)模型系列,专注于生成高质量的中文方言语音。该模型采用持续的半监督学习和特定的Transformer架构,通过多阶段训练过程,有效对齐文本和语音标记,实现中文方言的高质量语音合成。Bailing-TTS在实验中展现出接近人类自然表达的语音合成效果,对于方言语音合成领域具有重要意义。
7.8亿参数的双语生成模型
EXAONE-3.0-7.8B-Instruct是LG AI Research开发的一款具有7.8亿参数的双语(英语和韩语)预训练生成模型。模型通过8T的精选token进行预训练,并经过监督式微调和直接偏好优化进行后训练,展现出与同类大小的开放模型相比极具竞争力的基准性能。
开源AI搜索引擎框架,性能媲美Perplexity.ai Pro。
MindSearch是一个基于大型语言模型(LLM)的多智能体网络搜索引擎框架,具有与Perplexity.ai Pro相似的性能。用户可以轻松部署自己的搜索引擎,支持闭源大型语言模型(如GPT、Claude)或开源大型语言模型(如InternLM2.5-7b-chat)。它具备以下特点:能够解决生活中的任何问题,利用网络知识提供深入和广泛的知识库答案;展示详细的解决方案路径,提高最终响应的可信度和可用性;提供优化的UI体验,包括React、Gradio、Streamlit和Terminal等多种接口;动态构建图谱,将用户查询分解为图谱中的原子子问题,并根据WebSearcher的搜索结果逐步扩展图谱。
© 2025 AIbase 备案号:闽ICP备08105208号-14