需求人群:
"适用于处理要求对长序列数据进行高效建模和推理的NLP任务。"
使用场景示例:
长文本生成:利用Infini-attention技术生成长篇文章。
密钥检索:在处理长序列密钥上下文块检索任务中应用。
文本摘要:处理长篇文本生成精炼的文本摘要。
产品特色:
压缩记忆机制
局部与长期注意力结合
流式处理能力
支持快速流式推理
模型扩展性
浏览量:36
最新流量情况
月访问量
20208.01k
平均访问时长
00:04:14
每次访问页数
3.13
跳出率
44.64%
流量来源
直接访问
37.16%
自然搜索
48.37%
邮件
0.06%
外链引荐
13.08%
社交媒体
1.31%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
17.58%
英国
4.07%
印度
4.73%
韩国
5.14%
美国
28.59%
扩展Transformer模型处理无限长输入
Google开发的“Infini-attention”技术旨在扩展基于Transformer的大语言模型以处理无限长的输入,通过压缩记忆机制实现无限长输入处理,并在多个长序列任务上取得优异表现。技术方法包括压缩记忆机制、局部与长期注意力的结合和流式处理能力等。实验结果显示在长上下文语言建模、密钥上下文块检索和书籍摘要任务上的性能优势。
基于LLM的智能字幕助手,一键生成高质量视频字幕
卡卡字幕助手(VideoCaptioner)是一款功能强大的视频字幕配制软件,利用大语言模型进行字幕智能断句、校正、优化、翻译,实现字幕视频全流程一键处理。产品无需高配置,操作简单,内置基础LLM模型,保证开箱即用,且消耗模型Token少,适合视频制作者和内容创作者。
Meta 开发的子十亿参数语言模型,适用于设备端应用。
Meta 开发的自回归语言模型,采用优化架构,适合资源受限设备。优点多,如集成多种技术,支持零样本推理等,价格免费,面向自然语言处理研究人员和开发者。
高效优化的600M参数语言模型,专为设备端应用设计。
MobileLLM-600M是由Meta开发的自回归语言模型,采用了优化的Transformer架构,专为资源受限的设备端应用而设计。该模型集成了SwiGLU激活函数、深度薄架构、嵌入共享和分组查询注意力等关键技术。MobileLLM-600M在零样本常识推理任务上取得了显著的性能提升,与之前的125M/350M SoTA模型相比,分别提高了2.7%/4.3%的准确率。该模型的设计理念可扩展至更大模型,如MobileLLM-1B/1.5B,均取得了SoTA结果。
高效优化的子十亿参数语言模型,专为设备端应用设计
MobileLLM-350M是由Meta开发的自回归语言模型,采用优化的Transformer架构,专为设备端应用设计,以满足资源受限的环境。该模型整合了SwiGLU激活函数、深层薄架构、嵌入共享和分组查询注意力等关键技术,实现了在零样本常识推理任务上的显著准确率提升。MobileLLM-350M在保持较小模型尺寸的同时,提供了与更大模型相媲美的性能,是设备端自然语言处理应用的理想选择。
基于Transformer的实时开放世界AI模型
Oasis是由Decart AI开发的首个可玩、实时、开放世界的AI模型,它是一个互动视频游戏,由Transformer端到端生成,基于逐帧生成。Oasis能够接收用户键盘和鼠标输入,实时生成游戏玩法,内部模拟物理、游戏规则和图形。该模型通过直接观察游戏玩法学习,允许用户移动、跳跃、拾取物品、破坏方块等。Oasis被视为研究更复杂交互世界的基础模型的第一步,未来可能取代传统的游戏引擎。Oasis的实现需要模型架构的改进和模型推理技术的突破,以实现用户与模型的实时交互。Decart AI采用了最新的扩散训练和Transformer模型方法,并结合了大型语言模型(LLMs)来训练一个自回归模型,该模型可以根据用户即时动作生成视频。此外,Decart AI还开发了专有的推理框架,以提供NVIDIA H100 Tensor Core GPU的峰值利用率,并支持Etched即将推出的Sohu芯片。
基于多模态大语言模型的可解释图像检测与定位
FakeShield是一个多模态框架,旨在解决图像检测和定位(IFDL)领域中的两个主要挑战:检测原理的黑箱性和在不同篡改方法间的有限泛化能力。FakeShield通过利用GPT-4o增强现有的IFDL数据集,创建了多模态篡改描述数据集(MMTD-Set),用于训练FakeShield的篡改分析能力。该框架包括领域标签引导的可解释检测模块(DTE-FDM)和定位模块(MFLM),能够处理各种类型的篡改检测解释,并实现由详细文本描述引导的定位。FakeShield在检测准确性和F1分数上优于其他方法,提供了一个可解释且优越的解决方案。
全球大语言模型资源汇总
awesome-LLM-resourses是一个汇总了全球大语言模型(LLM)资源的平台,提供了从数据获取、微调、推理、评估到实际应用等一系列资源和工具。它的重要性在于为研究人员和开发者提供了一个全面的资源库,以便于他们能够更高效地开发和优化自己的语言模型。该平台由王荣胜维护,持续更新,为LLM领域的发展提供了强有力的支持。
一个支持B站直播的虚拟数字人项目
VirtualWife是一个虚拟数字人项目,旨在打造一个拥有自己“灵魂”的虚拟伴侣。该项目支持B站直播,并且兼容openai、ollama等大语言模型。VirtualWife不仅能够提供情感陪伴,还能作为恋爱导师和心理咨询师,满足人类的情感需求。项目处于孵化阶段,作者投入了大量的业余时间进行开发,希望用户能够通过点star来支持项目的发展。
小型语言模型调研、测量与洞察
SLM_Survey是一个专注于小型语言模型(SLMs)的研究项目,旨在通过调研和测量,提供对这些模型的深入了解和技术评估。该项目涵盖了基于Transformer的、仅解码器的语言模型,参数范围在100M至5B之间。通过对59个最先进的开源SLMs进行调研,分析了它们的技术创新,并在多个领域评估了它们的能力,包括常识推理、上下文学习、数学和编程。此外,还对它们的运行时成本进行了基准测试,包括推理延迟和内存占用。这些研究对于推动SLMs领域的研究具有重要价值。
全能的创造者和编辑器,通过扩散变换遵循指令
ACE是一个基于扩散变换的全能创造者和编辑器,它能够通过统一的条件格式Long-context Condition Unit (LCU)输入,实现多种视觉生成任务的联合训练。ACE通过高效的数据收集方法解决了训练数据缺乏的问题,并通过多模态大型语言模型生成准确的文本指令。ACE在视觉生成领域具有显著的性能优势,可以轻松构建响应任何图像创建请求的聊天系统,避免了视觉代理通常采用的繁琐流程。
开源大语言模型,匹配专有强大能力。
Open O1是一个开源项目,旨在通过开源创新,匹配专有的强大O1模型能力。该项目通过策划一组O1风格的思考数据,用于训练LLaMA和Qwen模型,赋予了这些较小模型更强大的长期推理和解决问题的能力。随着Open O1项目的推进,我们将继续推动大型语言模型的可能性,我们的愿景是创建一个不仅能够实现类似O1的性能,而且在测试时扩展性方面也处于领先地位的模型,使高级AI能力为所有人所用。通过社区驱动的开发和对道德实践的承诺,Open O1将成为AI进步的基石,确保技术的未来发展是开放的,并对所有人有益。
专为糖尿病患者设计的高级语言模型
Diabetica是一个专门针对糖尿病治疗和护理而开发的高级语言模型。它通过深度学习和大数据分析,能够提供包括诊断、治疗建议、药物管理、生活方式建议和患者教育在内的多种服务。Diabetica的模型Diabetica-7B和Diabetica-1.5B在多个糖尿病相关任务上展示了卓越的性能,并且提供了一个可复现的框架,使得其他医学领域也能受益于此类AI技术。
多语言大型语言模型
Llama-3.2-1B是由Meta公司发布的多语言大型语言模型,专注于文本生成任务。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)进行调优,以符合人类对有用性和安全性的偏好。该模型支持8种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语,并在多种对话使用案例中表现优异。
开启代码智能新篇章的模型
WaveCoder是由微软亚洲研究院开发的代码大语言模型,通过指令微调增强代码大语言模型的广泛性和多功能性。它在代码摘要、生成、翻译、修复等多个编程任务上展现出卓越的性能。WaveCoder的创新之处在于其使用的数据合成框架和两阶段指令数据生成策略,确保了数据的高质量和多样性。该模型的开源,为开发者提供了一个强大的编程辅助工具,有助于提高开发效率和代码质量。
自动化研究与开发工具,提升研发效率与质量。
RD-Agent是微软亚洲研究院推出的一款自动化研究与开发工具,依托大语言模型的强大能力,开创了以人工智能驱动R&D流程自动化的新模式。它通过整合数据驱动的R&D系统,可以借助人工智能能力驱动创新与开发的自动化,不仅提高了研发效率,还利用智能化的决策和反馈机制,为未来的跨领域创新与知识迁移提供了无限可能。
利用大语言模型生成PPT文件的SpringBoot Web应用
PresentationGen是一个基于SpringBoot框架开发的Web应用程序,它通过集成大语言模型(LLM)来自动化生成PPT文件。该技术通过预处理大量单页模板,并在用户使用时根据需求实时组合,实现快速生成PPTX文件。它支持文本替换,使得生成的演示文稿更加个性化和专业。该产品主要面向需要快速制作演示文稿的用户,如商务人士、教育工作者和设计师,帮助他们节省时间并提高工作效率。
开源时空基础模型,用于交通预测
OpenCity是一个开源的时空基础模型,专注于交通预测领域。该模型通过整合Transformer架构和图神经网络,有效捕捉和标准化交通数据中的复杂时空依赖关系,实现对不同城市环境的零样本泛化。它在大规模、异构的交通数据集上进行预训练,学习到丰富、可泛化的表示,能够无缝应用于多种交通预测场景。
人工智能领域的多轮对话处理专家
汉王天地大模型是汉王科技推出的一款专注于人工智能领域的大语言模型,拥有30年的行业积累。它能够实现多轮对话,高效处理任务,并深耕办公、教育、人文等多个垂直细分领域。该模型通过从人类反馈中进行强化学习,不断优化自身智能,提供包括智能校对、自动翻译、法律咨询、绘画生成、文案生成等在内的多样化服务,以赋能法律、人文、办公、教育、医养等行业,提升效率和创意。
生成高质量中文方言语音的大规模文本到语音模型。
Bailing-TTS是由Giant Network的AI Lab开发的大型文本到语音(TTS)模型系列,专注于生成高质量的中文方言语音。该模型采用持续的半监督学习和特定的Transformer架构,通过多阶段训练过程,有效对齐文本和语音标记,实现中文方言的高质量语音合成。Bailing-TTS在实验中展现出接近人类自然表达的语音合成效果,对于方言语音合成领域具有重要意义。
开源AI搜索引擎框架,性能媲美Perplexity.ai Pro。
MindSearch是一个基于大型语言模型(LLM)的多智能体网络搜索引擎框架,具有与Perplexity.ai Pro相似的性能。用户可以轻松部署自己的搜索引擎,支持闭源大型语言模型(如GPT、Claude)或开源大型语言模型(如InternLM2.5-7b-chat)。它具备以下特点:能够解决生活中的任何问题,利用网络知识提供深入和广泛的知识库答案;展示详细的解决方案路径,提高最终响应的可信度和可用性;提供优化的UI体验,包括React、Gradio、Streamlit和Terminal等多种接口;动态构建图谱,将用户查询分解为图谱中的原子子问题,并根据WebSearcher的搜索结果逐步扩展图谱。
1T开源多语言大型语言模型
Tele-FLM-1T是一个开源的1T多语言大型语言模型,基于解码器仅Transformer架构,经过约2T tokens的训练。该模型在规模上展现出卓越的性能,有时甚至超越了更大的模型。除了分享模型权重外,还提供了核心设计、工程实践和训练细节,期待对学术和工业社区都有所裨益。
7亿参数的语言模型,展示数据整理技术的有效性。
DCLM-Baseline-7B是一个7亿参数的语言模型,由DataComp for Language Models (DCLM)团队开发,主要使用英语。该模型旨在通过系统化的数据整理技术来提高语言模型的性能。模型训练使用了PyTorch与OpenLM框架,优化器为AdamW,学习率为2e-3,权重衰减为0.05,批次大小为2048序列,序列长度为2048个token,总训练token数达到了2.5T。模型训练硬件使用了H100 GPU。
高性能的开源代码模型
Mamba-Codestral-7B-v0.1 是 Mistral AI Team 开发的基于 Mamba2 架构的开源代码模型,性能与最先进的基于 Transformer 的代码模型相当。它在多个行业标准基准测试中表现出色,提供高效的代码生成和理解能力,适用于编程和软件开发领域。
快速且内存高效的精确注意力机制
FlashAttention是一个开源的注意力机制库,专为深度学习中的Transformer模型设计,以提高计算效率和内存使用效率。它通过IO感知的方法优化了注意力计算,减少了内存占用,同时保持了精确的计算结果。FlashAttention-2进一步改进了并行性和工作分配,而FlashAttention-3针对Hopper GPU进行了优化,支持FP16和BF16数据类型。
高等数学问题的智能解答助手
AMchat是一个集成了数学知识和高等数学习题及其解答的大语言模型。它基于InternLM2-Math-7B模型,通过xtuner微调,专门设计用于解答高等数学问题。该项目在2024浦源大模型系列挑战赛(春季赛)中获得Top12和创新创意奖,体现了其在高等数学领域的专业能力和创新性。
哔哩哔哩自主研发的轻量级大语言模型
Index-1.9B系列是哔哩哔哩公司自主研发的轻量级大语言模型,包含多种版本,如base、pure、chat和character等,适用于中英文为主的语料预训练,并在多个评测基准上表现优异。模型支持SFT和DPO对齐,以及RAG技术实现角色扮演定制,适用于对话生成、角色扮演等场景。
大型视频语言模型,用于视觉问答和视频字幕生成。
VideoLLaMA2-7B-16F-Base是由DAMO-NLP-SG团队开发的大型视频语言模型,专注于视频问答(Visual Question Answering)和视频字幕生成。该模型结合了先进的空间-时间建模和音频理解能力,为多模态视频内容分析提供了强大的支持。它在视觉问答和视频字幕生成任务上展现出卓越的性能,能够处理复杂的视频内容并生成准确的描述和答案。
© 2024 AIbase 备案号:闽ICP备08105208号-14