需求人群:
["学习","阅读","办公","写作","生活"]
使用场景示例:
使用蓝心大模型自动生成一篇关于维沃公司的介绍文章
向蓝心大模型提问一些常见的科技知识问题
利用蓝心大模型的逻辑推理能力检验一个数学定理的正确性
产品特色:
内容创作
知识问答
逻辑推理
代码生成
信息提取
浏览量:5135
最新流量情况
月访问量
44.56k
平均访问时长
00:02:48
每次访问页数
2.22
跳出率
46.51%
流量来源
直接访问
34.72%
自然搜索
33.77%
邮件
0.05%
外链引荐
30.31%
社交媒体
0.97%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
71.96%
新加坡
9.10%
美国
4.57%
强大的语言模型,拥有4560亿总参数,可处理长达400万token的上下文。
MiniMax-01是一个具有4560亿总参数的强大语言模型,其中每个token激活459亿参数。它采用混合架构,结合了闪电注意力、softmax注意力和专家混合(MoE),通过先进的并行策略和创新的计算-通信重叠方法,如线性注意力序列并行主义加(LASP+)、varlen环形注意力、专家张量并行(ETP)等,将训练上下文长度扩展到100万tokens,在推理时可处理长达400万tokens的上下文。在多个学术基准测试中,MiniMax-01展现了顶级模型的性能。
高性能英文语言模型,适用于多样化任务
OLMo-2-1124-13B-DPO是经过监督微调和DPO训练的13B参数大型语言模型,主要针对英文,旨在提供在聊天、数学、GSM8K和IFEval等多种任务上的卓越性能。该模型是OLMo系列的一部分,旨在推动语言模型的科学研究。模型训练基于Dolma数据集,并公开代码、检查点、日志和训练细节。
最先进的全开放语言模型
OLMo 2是由Ai2推出的最新全开放语言模型,包括7B和13B两种规模的模型,训练数据高达5T tokens。这些模型在性能上与同等规模的全开放模型相当或更优,并且在英语学术基准测试中与开放权重模型如Llama 3.1竞争。OLMo 2的开发注重模型训练的稳定性、阶段性训练干预、最先进的后训练方法和可操作的评估框架。这些技术的应用使得OLMo 2在多个任务上表现出色,特别是在知识回忆、常识、一般和数学推理方面。
一个完全开源的大型语言模型,提供先进的自然语言处理能力。
MAP-NEO是一个完全开源的大型语言模型,它包括预训练数据、数据处理管道(Matrix)、预训练脚本和对齐代码。该模型从零开始训练,使用了4.5T的英文和中文token,展现出与LLaMA2 7B相当的性能。MAP-NEO在推理、数学和编码等具有挑战性的任务中表现出色,超越了同等规模的模型。为了研究目的,我们致力于实现LLM训练过程的完全透明度,因此我们全面发布了MAP-NEO,包括最终和中间检查点、自训练的分词器、预训练语料库以及高效稳定的优化预训练代码库。
扩展LLaVA模型,集成Phi-3和LLaMA-3,提升视觉与语言模型的交互能力。
LLaVA++是一个开源项目,旨在通过集成Phi-3和LLaMA-3模型来扩展LLaVA模型的视觉能力。该项目由Mohamed bin Zayed University of AI (MBZUAI)的研究人员开发,通过结合最新的大型语言模型,增强了模型在遵循指令和学术任务导向数据集上的表现。
提高LLM选择性预测能力的框架
ASPIRE是一个设计精良的框架,用于增强大型语言模型的选择性预测能力。它通过参数高效的微调训练LLM进行自我评估,使其能够针对生成的答案输出置信度分数。实验结果表明,ASPIRE在各种问答数据集上明显优于目前的选择性预测方法。
vivo自主研发的智能语言理解模型
蓝心大模型是vivo自主研发的智能语言理解模型,具有70亿模型参数量,可以处理32K上下文长度。它基于260TB的多语言训练语料,拥有强大的语言理解能力,可以广泛应用于内容创作、知识问答、逻辑推理、代码生成等场景,持续为用户提供安全可靠的人机交互体验。该模型已通过严格的安全合规检测,输出结果安全合规。
首个面向语境智能的人类级实时交互系统,支持多情感、多风格语音交互。
SpeechGPT 2.0-preview 是一款由复旦大学自然语言处理实验室开发的先进语音交互模型。它通过海量语音数据训练,实现了低延迟、高自然度的语音交互能力。该模型能够模拟多种情感、风格和角色的语音表达,同时支持工具调用、在线搜索和外部知识库访问等功能。其主要优点包括强大的语音风格泛化能力、多角色模拟以及低延迟交互体验。目前该模型仅支持中文语音交互,未来计划扩展到更多语言。
Tarsier 是由字节跳动推出的用于生成高质量视频描述的大型视频语言模型。
Tarsier 是由字节跳动研究团队开发的一系列大规模视频语言模型,旨在生成高质量的视频描述,并具备强大的视频理解能力。该模型通过两阶段训练策略(多任务预训练和多粒度指令微调)显著提升了视频描述的精度和细节。其主要优点包括高精度的视频描述能力、对复杂视频内容的理解能力以及在多个视频理解基准测试中取得的 SOTA(State-of-the-Art)结果。Tarsier 的背景基于对现有视频语言模型在描述细节和准确性上的不足进行改进,通过大规模高质量数据训练和创新的训练方法,使其在视频描述领域达到了新的高度。该模型目前未明确定价,主要面向学术研究和商业应用,适合需要高质量视频内容理解和生成的场景。
百川智能开发的专为医疗场景优化的开源大语言模型,具备卓越的通用能力和医疗领域性能。
Baichuan-M1-14B 是由百川智能开发的开源大语言模型,专为医疗场景优化。它基于20万亿token的高质量医疗与通用数据训练,覆盖20多个医疗科室,具备强大的上下文理解和长序列任务表现能力。该模型在医疗领域表现出色,同时在通用任务中也达到了同尺寸模型的效果。其创新的模型结构和训练方法使其在医疗推理、病症判断等复杂任务中表现出色,为医疗领域的人工智能应用提供了强大的支持。
UPDF AI 助力用户对 PDF 文档进行总结、翻译、解释、重写、构思,提升阅读效率。
UPDF AI 是一款基于人工智能技术的 PDF 智能处理工具。它通过与 PDF 文档的交互,帮助用户快速提取和分析文档中的关键信息,从而提高阅读和学习效率。该产品利用先进的自然语言处理技术,能够精准地对文档内容进行总结、翻译、解释等操作。其主要优点包括高效的信息提取能力、精准的语言处理能力以及便捷的用户交互体验。UPDF AI 面向需要处理大量 PDF 文档的用户,无论是学生、研究人员还是专业人士,都能从中受益。目前,该产品的具体价格和定位尚未明确,但其强大的功能和高效的表现使其在市场上具有较高的竞争力。
WebWalker是一个用于评估大型语言模型在网页遍历能力上的基准测试框架。
WebWalker是一个由阿里巴巴集团通义实验室开发的多智能体框架,用于评估大型语言模型(LLMs)在网页遍历任务中的表现。该框架通过模拟人类浏览网页的方式,通过探索和评估范式来系统地提取高质量数据。WebWalker的主要优点在于其创新的网页遍历能力,能够深入挖掘多层级信息,弥补了传统搜索引擎在处理复杂问题时的不足。该技术对于提升语言模型在开放域问答中的表现具有重要意义,尤其是在需要多步骤信息检索的场景中。WebWalker的开发旨在推动语言模型在信息检索领域的应用和发展。
将Common Crawl转化为精细的长期预训练数据集
Nemotron-CC是一个基于Common Crawl的6.3万亿token的数据集。它通过分类器集成、合成数据改写和减少启发式过滤器的依赖,将英文Common Crawl转化为一个6.3万亿token的长期预训练数据集,包含4.4万亿全球去重的原始token和1.9万亿合成生成的token。该数据集在准确性和数据量之间取得了更好的平衡,对于训练大型语言模型具有重要意义。
展示小型语言模型通过自我演化深度思考掌握数学推理能力的研究成果。
rStar-Math是一项研究,旨在证明小型语言模型(SLMs)能够在不依赖于更高级模型的情况下,与OpenAI的o1模型相媲美甚至超越其数学推理能力。该研究通过蒙特卡洛树搜索(MCTS)实现“深度思考”,其中数学策略SLM在基于SLM的流程奖励模型的指导下进行测试时搜索。rStar-Math引入了三种创新方法来应对训练两个SLM的挑战,通过4轮自我演化和数百万个合成解决方案,将SLMs的数学推理能力提升到最先进水平。该模型在MATH基准测试中显著提高了性能,并在AIME竞赛中表现优异。
一种无需实时检索的语言模型增强方法,通过预加载知识缓存来提高生成效率。
CAG(Cache-Augmented Generation)是一种创新的语言模型增强技术,旨在解决传统RAG(Retrieval-Augmented Generation)方法中存在的检索延迟、检索错误和系统复杂性等问题。通过在模型上下文中预加载所有相关资源并缓存其运行时参数,CAG能够在推理过程中直接生成响应,无需进行实时检索。这种方法不仅显著降低了延迟,提高了可靠性,还简化了系统设计,使其成为一种实用且可扩展的替代方案。随着大型语言模型(LLMs)上下文窗口的不断扩展,CAG有望在更复杂的应用场景中发挥作用。
Eurus-2-7B-SFT是一个经过数学能力优化的大型语言模型,专注于推理和问题解决.
Eurus-2-7B-SFT是基于Qwen2.5-Math-7B模型进行微调的大型语言模型,专注于数学推理和问题解决能力的提升。该模型通过模仿学习(监督微调)的方式,学习推理模式,能够有效解决复杂的数学问题和编程任务。其主要优点在于强大的推理能力和对数学问题的准确处理,适用于需要复杂逻辑推理的场景。该模型由PRIME-RL团队开发,旨在通过隐式奖励的方式提升模型的推理能力。
未来大型语言模型的解锁者
Sonus AI是一个以Sonus-1模型为核心的大型语言模型,它重新定义了语言理解和计算的边界。Sonus-1以其卓越的复杂问题解决能力而著称,远超过典型的语言模型。Sonus AI提供了增强的搜索和实时信息检索功能,确保用户能够访问到最新和最精确的信息。此外,Sonus AI还计划推出开发者友好的API,以便将Sonus-1的强大能力集成到各种应用中。Sonus AI的产品背景信息显示,它是一个面向未来的技术,旨在通过先进的AI能力提升用户的工作效率和信息获取的准确性。
Sonus-1:开启大型语言模型(LLMs)的新时代
Sonus-1是Sonus AI推出的一系列大型语言模型(LLMs),旨在推动人工智能的边界。这些模型以其高性能和多应用场景的多功能性而设计,包括Sonus-1 Mini、Sonus-1 Air、Sonus-1 Pro和Sonus-1 Pro (w/ Reasoning)等不同版本,以满足不同需求。Sonus-1 Pro (w/ Reasoning)在多个基准测试中表现突出,特别是在推理和数学问题上,展现了其超越其他专有模型的能力。Sonus AI致力于开发高性能、可负担、可靠且注重隐私的大型语言模型。
知识增强型故事角色定制的统一世界模型
StoryWeaver是一个为知识增强型故事角色定制而设计的统一世界模型,旨在实现单一和多角色故事可视化。该模型基于AAAI 2025论文,能够通过统一的框架处理故事中角色的定制和可视化,这对于自然语言处理和人工智能领域具有重要意义。StoryWeaver的主要优点包括其能够处理复杂故事情境的能力,以及能够持续更新和扩展其功能。产品背景信息显示,该模型将不断更新arXiv论文,并添加更多实验结果。
一款高效率的2.4亿参数轻量级语言模型
YuLan-Mini是由中国人民大学AI Box团队开发的一款轻量级语言模型,具有2.4亿参数,尽管仅使用1.08T的预训练数据,但其性能可与使用更多数据训练的行业领先模型相媲美。该模型特别擅长数学和代码领域,为了促进可复现性,团队将开源相关的预训练资源。
场景感知的语义导航与指令引导控制模型
SCENIC是一个文本条件的场景交互模型,能够适应具有不同地形的复杂场景,并支持使用自然语言进行用户指定的语义控制。该模型通过用户指定的轨迹作为子目标和文本提示,来导航3D场景。SCENIC利用层次化推理场景的方法,结合运动与文本之间的帧对齐,实现不同运动风格之间的无缝过渡。该技术的重要性在于其能够生成符合真实物理规则和用户指令的角色导航动作,对于虚拟现实、增强现实以及游戏开发等领域具有重要意义。
一站式大模型算法、模型及优化工具开源项目
FlagAI是由北京智源人工智能研究院推出的一站式、高质量开源项目,集成了全球各种主流大模型算法技术以及多种大模型并行处理和训练加速技术。它支持高效训练和微调,旨在降低大模型开发和应用的门槛,提高开发效率。FlagAI涵盖了多个领域明星模型,如语言大模型OPT、T5,视觉大模型ViT、Swin Transformer,多模态大模型CLIP等。智源研究院也持续将“悟道2.0”“悟道3.0”大模型项目成果开源至FlagAI,目前该项目已经加入Linux基金会,吸引全球科研力量共同创新、共同贡献。
开源的端到端视觉语言模型(VLM)基础的GUI代理
CogAgent是一个基于视觉语言模型(VLM)的GUI代理,它通过屏幕截图和自然语言实现双语(中文和英文)交云。CogAgent在GUI感知、推理预测准确性、操作空间完整性和任务泛化方面取得了显著进步。该模型已经在ZhipuAI的GLM-PC产品中得到应用,旨在帮助研究人员和开发者推进基于视觉语言模型的GUI代理的研究和应用。
将语音转换为博客文章的助手
Robo Blogger是一个专注于将语音转换为博客文章的人工智能助手。它通过捕捉自然语言中的创意,将其结构化为有条理的博客内容,同时可以结合参考资料以确保文章的准确性和深度。这个工具基于之前Report mAIstro项目的概念,专为博客文章创作优化。通过分离创意捕捉和内容结构化,Robo Blogger帮助保持原始想法的真实性,同时确保专业呈现。
高效、多语种的语音合成模型
CosyVoice语音生成大模型2.0-0.5B是一个高性能的语音合成模型,支持零样本、跨语言的语音合成,能够根据文本内容直接生成相应的语音输出。该模型由通义实验室提供,具有强大的语音合成能力和广泛的应用场景,包括但不限于智能助手、有声读物、虚拟主播等。模型的重要性在于其能够提供自然、流畅的语音输出,极大地丰富了人机交互的体验。
WePOINTS项目,提供多模态模型的统一框架
WePOINTS是由微信AI团队开发的一系列多模态模型,旨在创建一个统一框架,容纳各种模态。这些模型利用最新的多模态模型进展和技术,推动内容理解和生成的无缝统一。WePOINTS项目不仅提供了模型,还包括了预训练数据集、评估工具和使用教程,是多模态人工智能领域的重要贡献。
大型语言模型,用于文本生成和分类
OLMo-2-1124-7B-RM是由Hugging Face和Allen AI共同开发的一个大型语言模型,专注于文本生成和分类任务。该模型基于7B参数的规模构建,旨在处理多样化的语言任务,包括聊天、数学问题解答、文本分类等。它是基于Tülu 3数据集和偏好数据集训练的奖励模型,用于初始化RLVR训练中的价值模型。OLMo系列模型的发布,旨在推动语言模型的科学研究,通过开放代码、检查点、日志和相关的训练细节,促进了模型的透明度和可访问性。
© 2025 AIbase 备案号:闽ICP备08105208号-14