需求人群:
"Llama 3.2的目标受众是研究人员、开发者和企业用户,他们需要在多种语言环境下使用先进的语言模型来开发智能助手、聊天机器人和其他语言处理应用。"
使用场景示例:
用于开发多语言聊天机器人,提供客户服务。
作为知识检索工具,帮助用户快速找到所需信息。
用于内容创作,帮助用户生成文章和摘要。
产品特色:
支持8种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。
使用优化的Transformer架构,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)进行调优。
模型训练数据截止到2023年12月,使用了高达9万亿个token的数据。
模型可用于商业和研究用途,特别适合助手类聊天和代理应用。
遵循负责任的发布方法,包括安全微调和系统级安全措施。
训练过程中使用了916k GPU小时的计算,并且Meta公司已实现净零温室气体排放。
使用教程:
访问Hugging Face网站并搜索Llama 3.2模型。
根据需要选择使用transformers库或原始llama代码库的版本。
使用pip安装transformers库,并确保版本至少为4.43.0。
通过transformers库的pipeline或Auto类使用generate()函数运行对话推断。
根据模型的README文件提供说明,配置生成参数。
遵循模型使用指南,确保遵守Llama 3.2社区许可协议和可接受使用政策。
浏览量:32
最新流量情况
月访问量
19075.32k
平均访问时长
00:05:32
每次访问页数
5.52
跳出率
45.07%
流量来源
直接访问
48.31%
自然搜索
36.36%
邮件
0.03%
外链引荐
12.17%
社交媒体
3.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.13%
印度
7.59%
日本
3.67%
俄罗斯
6.13%
美国
18.18%
多语言大型语言模型
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
O1复制之旅:战略进展报告第一部分
O1-Journey是由上海交通大学GAIR研究组发起的一个项目,旨在复制和重新想象OpenAI的O1模型的能力。该项目提出了“旅程学习”的新训练范式,并构建了首个成功整合搜索和学习在数学推理中的模型。这个模型通过试错、纠正、回溯和反思等过程,成为处理复杂推理任务的有效方法。
高性能英文语言模型,适用于多样化任务
OLMo-2-1124-13B-DPO是经过监督微调和DPO训练的13B参数大型语言模型,主要针对英文,旨在提供在聊天、数学、GSM8K和IFEval等多种任务上的卓越性能。该模型是OLMo系列的一部分,旨在推动语言模型的科学研究。模型训练基于Dolma数据集,并公开代码、检查点、日志和训练细节。
基于大型语言模型的主动式代理,预测用户需求并主动提供帮助。
ProactiveAgent是一个基于大型语言模型(LLM)的主动式代理项目,旨在构建一个能够预测用户需求并主动提供帮助的智能代理。该项目通过数据收集和生成管道、自动评估器和训练代理来实现这一目标。ProactiveAgent的主要优点包括环境感知、协助标注、动态数据生成和构建管道,其奖励模型在测试集上达到了0.918的F1分数,显示出良好的性能。该产品背景信息显示,它适用于编程、写作和日常生活场景,并且遵循Apache License 2.0协议。
最先进的全开放语言模型
OLMo 2是由Ai2推出的最新全开放语言模型,包括7B和13B两种规模的模型,训练数据高达5T tokens。这些模型在性能上与同等规模的全开放模型相当或更优,并且在英语学术基准测试中与开放权重模型如Llama 3.1竞争。OLMo 2的开发注重模型训练的稳定性、阶段性训练干预、最先进的后训练方法和可操作的评估框架。这些技术的应用使得OLMo 2在多个任务上表现出色,特别是在知识回忆、常识、一般和数学推理方面。
Qwen Turbo 1M Demo是一个由Qwen提供的Hugging Face空间。
Qwen Turbo 1M Demo是一个基于Hugging Face平台的人工智能模型演示。这个模型代表了自然语言处理技术的最新进展,特别是在中文文本理解和生成方面。它的重要性在于能够提供高效、准确的语言模型,以支持各种语言相关的应用,如机器翻译、文本摘要、问答系统等。Qwen Turbo 1M Demo以其较小的模型尺寸和快速的处理速度而受到青睐,适合需要快速部署和高效运行的场合。目前,该模型是免费试用的,具体价格和定位可能需要进一步的商业洽谈。
多语言生成语言模型
Aya模型是一个大规模的多语言生成性语言模型,能够在101种语言中遵循指令。该模型在多种自动和人类评估中优于mT0和BLOOMZ,尽管它覆盖的语言数量是后者的两倍。Aya模型使用包括xP3x、Aya数据集、Aya集合、DataProvenance集合的一个子集和ShareGPT-Command等多个数据集进行训练,并在Apache-2.0许可下发布,以推动多语言技术的发展。
多语言大型语言模型,支持23种语言
Aya Expanse 32B是由Cohere For AI开发的多语言大型语言模型,拥有32亿参数,专注于提供高性能的多语言支持。它结合了先进的数据仲裁、多语言偏好训练、安全调整和模型合并技术,以支持23种语言,包括阿拉伯语、中文(简体和繁体)、捷克语、荷兰语、英语、法语、德语、希腊语、希伯来语、印地语、印尼语、意大利语、日语、韩语、波斯语、波兰语、葡萄牙语、罗马尼亚语、俄语、西班牙语、土耳其语、乌克兰语和越南语。该模型的发布旨在使社区基础的研究工作更加易于获取,通过发布高性能的多语言模型权重,供全球研究人员使用。
长视频语言理解的时空自适应压缩模型
LongVU是一种创新的长视频语言理解模型,通过时空自适应压缩机制减少视频标记的数量,同时保留长视频中的视觉细节。这一技术的重要性在于它能够处理大量视频帧,且在有限的上下文长度内仅损失少量视觉信息,显著提升了长视频内容理解和分析的能力。LongVU在多种视频理解基准测试中均超越了现有方法,尤其是在理解长达一小时的视频任务上。此外,LongVU还能够有效地扩展到更小的模型尺寸,同时保持最先进的视频理解性能。
创造无限可能的人工智能助手
YunHu Ai 是一个基于人工智能技术的聊天助手,旨在通过自然语言处理和机器学习技术,为用户提供高效、智能的对话体验。它能够理解用户的需求,提供准确的信息和建议,帮助用户解决问题。YunHu Ai 以其强大的语言理解能力、快速响应和用户友好的界面而受到用户的喜爱。
探索无限智能,构建更完美的聚合之路。
智语1号是一个以智能系统为基础的聊天平台,提供用户与AI进行互动交流的体验。它利用大模型技术,通过自然语言处理和机器学习,使得AI能够理解和回应用户的各种问题和需求。智语1号的背景是随着人工智能技术的发展,人们对于智能助手的需求日益增长,它旨在为用户提供一个高效、智能的交流环境。产品目前是免费试用,主要面向对智能聊天感兴趣的用户群体。
高效能、低资源消耗的混合专家模型
GRIN-MoE是由微软开发的混合专家(Mixture of Experts, MoE)模型,专注于提高模型在资源受限环境下的性能。该模型通过使用SparseMixer-v2来估计专家路由的梯度,与传统的MoE训练方法相比,GRIN-MoE在不依赖专家并行处理和令牌丢弃的情况下,实现了模型训练的扩展。它在编码和数学任务上表现尤为出色,适用于需要强推理能力的场景。
高效能的指令式微调AI模型
Mistral-Small-Instruct-2409是由Mistral AI Team开发的一个具有22B参数的指令式微调AI模型,支持多种语言,并能够支持高达128k的序列长度。该模型特别适用于需要长文本处理和复杂指令理解的场景,如自然语言处理、机器学习等领域。
加速人类科学发现的人工智能
xAI是一家专注于构建人工智能以加速人类科学发现的公司。我们由埃隆·马斯克领导,他是特斯拉和SpaceX的CEO。我们的团队贡献了一些该领域最广泛使用的方法,包括Adam优化器、批量归一化、层归一化和对抗性示例的发现。我们进一步引入了Transformer-XL、Autoformalization、记忆变换器、批量大小缩放、μTransfer和SimCLR等创新技术和分析。我们参与并领导了AlphaStar、AlphaCode、Inception、Minerva、GPT-3.5和GPT-4等该领域一些最大的突破性发展。我们的团队由AI安全中心主任Dan Hendrycks提供咨询。我们与X公司紧密合作,将我们的技术带给超过5亿X应用用户。
基于记忆的RAG框架,用于全目的应用
MemoRAG是一个基于记忆的RAG框架,它通过高效的超长记忆模型,为各种应用提供支持。与传统的RAG不同,MemoRAG利用其记忆模型实现对整个数据库的全局理解,通过从记忆中回忆查询特定的线索,增强证据检索,从而生成更准确、更丰富的上下文响应。MemoRAG的开发活跃,不断有资源和原型在此仓库发布。
模块化研究导向的检索增强生成统一框架
RAGLAB是一个模块化、研究导向的开源框架,专注于检索增强生成(RAG)算法。它提供了6种现有RAG算法的复现,以及一个包含10个基准数据集的全面评估系统,支持公平比较不同RAG算法,并便于高效开发新算法、数据集和评估指标。
集成了通用和编程能力的人工智能模型
DeepSeek-V2.5 是一个升级版本,结合了 DeepSeek-V2-Chat 和 DeepSeek-Coder-V2-Instruct 的功能。这个新模型整合了两个先前版本的通用和编程能力,更好地符合人类的偏好,并在写作和指令遵循等多个方面进行了优化。
情商智商俱佳的多模态大模型
西湖大模型是心辰智能云推出的一款具有高情商和智商的多模态大模型,它能够处理包括文本、图像、声音等多种数据类型,为用户提供智能对话、写作、绘画、语音等AI服务。该模型通过先进的人工智能算法,能够理解和生成自然语言,适用于多种场景,如心理咨询、内容创作、客户服务等,具有高度的定制性和灵活性。西湖大模型的推出,标志着心辰智能云在AI领域的技术实力和创新能力,为用户提供了更加丰富和高效的智能服务体验。
世界顶尖的开源大型语言模型
Reflection Llama-3.1 70B 是目前世界上顶尖的开源大型语言模型(LLM),采用名为 Reflection-Tuning 的新技术进行训练,使模型能够检测其推理中的错误并进行修正。该模型在合成数据上进行了训练,这些数据由 Glaive 生成。对于正在训练模型的用户来说,Glaive 是一个非常出色的工具。该模型使用标准的 Llama 3.1 聊天格式,通过特殊的标签来区分模型的内部思考和最终答案,从而提升用户体验。
高效开源的大型语言模型
OLMoE-1B-7B 是一个具有1亿活跃参数和7亿总参数的专家混合型大型语言模型(LLM),于2024年9月发布。该模型在成本相似的模型中表现卓越,与更大的模型如Llama2-13B竞争。OLMoE完全开源,支持多种功能,包括文本生成、模型训练和部署等。
RWKV v6 Finch 14B,开源大模型,高效处理长文本。
RWKV v6 Finch 14B是RWKV架构的第六个版本,也是该系列中最大的模型。它通过引入数据依赖性到token shift和time-mixing中,提高了处理长文本时的效率。Finch 14B模型在处理提示时,能够更好地管理其长期记忆,从而提供更广泛的应用范围。该模型是开源的,由Linux Foundation认可,并且接受社区的GPU集群时间捐赠以支持训练。
104B参数的多语种高级对话生成模型
C4AI Command R+ 08-2024是一个拥有104B参数的大规模研究发布模型,具备高度先进的能力,包括检索增强生成(RAG)和工具使用,以自动化复杂任务。该模型支持23种语言的训练,并在10种语言中进行评估。它优化了多种用例,包括推理、总结和问答。
一个用于加载和测试大型语言模型的互动平台。
LLM Playground是一个在线平台,允许用户加载和测试各种大型语言模型。它为开发者和研究者提供了一个实验和探索人工智能最新进展的环境。该平台的主要优点是易于使用,支持多种模型,并且可以即时看到模型的输出结果。
高质量、类人同声传译系统
CLASI是一个由字节跳动研究团队开发的高质量、类人同声传译系统。它通过新颖的数据驱动读写策略平衡翻译质量和延迟,采用多模态检索模块来增强特定领域术语的翻译,利用大型语言模型(LLMs)生成容错翻译,考虑输入音频、历史上下文和检索信息。在真实世界场景中,CLASI在中英和英中翻译方向上分别达到了81.3%和78.0%的有效信息比例(VIP),远超其他系统。
大型语言模型的详细列表和信息
Models Table 提供了一个包含300多个大型语言模型的列表,这些模型被所有主要的AI实验室使用,包括Amazon Olympus, OpenAI GPT-5, OpenAI GPT-6等。该列表展示了大型语言模型的发展趋势和多样性,对于AI研究者和开发者来说是一个宝贵的资源。
多语言指令微调的大型语言模型
Aya-23-8B是由Cohere For AI开发的指令微调模型,具有23种语言的强大多语言能力,专注于将高性能预训练模型与Aya Collection结合,为研究人员提供高性能的多语言模型。
易用的大规模语言模型知识编辑框架
EasyEdit 是一个面向大型语言模型(LLMs)的易用知识编辑框架,旨在帮助用户高效、准确地调整预训练模型的特定行为。它提供了统一的编辑器、方法和评估框架,支持多种知识编辑技术,如ROME、MEND等,并提供了丰富的数据集和评估指标,以衡量编辑的可靠性、泛化性、局部性和可移植性。
小米开发的大规模预训练语言模型,参数规模64亿。
MiLM-6B是由小米公司开发的大规模预训练语言模型,参数规模达到64亿,它在中文基础模型评测数据集C-Eval和CMMLU上均取得同尺寸最好的效果。该模型代表了自然语言处理领域的最新进展,具有强大的语言理解和生成能力,可以广泛应用于文本生成、机器翻译、问答系统等多种场景。
© 2024 AIbase 备案号:闽ICP备08105208号-14