Understanding Video Transformers

Understanding Video Transformers

这篇论文研究了视频Transformer表示的概念解释问题。具体而言,我们试图解释基于高级时空概念的视频Transformer的决策过程,这些概念是自动发现的。以往关于基于概念的可解释性的研究仅集中在图像级任务上。相比之下,视频模型处理了额外的时间维度,增加了复杂性,并在识别随时间变化的动态概念方面提出了挑战。在这项工作中,我们通过引入第一个视频Transformer概念发现(VTCD)算法系统地解决了这些挑战。为此,我们提出了一种有效的无监督视频Transformer表示单元(概念)识别方法,并对它们在模型输出中的重要性进行排名。所得的概念具有很高的可解释性,揭示了非结构化视频模型中的时空推理机制和以对象为中心的表示。通过在多样的监督和自监督表示上联合进行这种分析,我们发现其中一些机制在视频Transformer中是普遍的。最后,我们证明VTCD可以用于改善精细任务的模型性能。

需求人群:

"用于解释视频Transformer的决策过程,并改善模型性能"

使用场景示例:

解释视频Transformer决策过程

改善视频模型的性能

发现视频Transformer中的普遍机制

产品特色:

无监督视频Transformer概念发现

排名视频Transformer概念的重要性

揭示视频Transformer中的时空推理机制和对象表示

浏览量:20

s1785318098921236

打开站点

构建AI去赚钱
s1785341518918206
网站流量情况

最新流量情况

月访问量

19075.32k

平均访问时长

00:05:32

每次访问页数

5.52

跳出率

45.07%

流量来源

直接访问

48.31%

自然搜索

36.36%

邮件

0.03%

外链引荐

12.17%

社交媒体

3.11%

展示广告

0

截止目前所有流量趋势图

地理流量分布情况

中国

13.13%

印度

7.59%

日本

3.67%

俄罗斯

6.13%

美国

18.18%

类似产品

© 2024     AIbase    备案号:闽ICP备08105208号-14

隐私政策

用户协议

意见反馈 网站地图