需求人群:
"FakeShield的目标受众是图像取证专家、网络安全分析师以及任何需要检测和定位图像篡改的个人或组织。该产品通过提供可解释的检测结果和精确的篡改区域定位,帮助用户理解篡改发生的方式和原因,从而提高图像内容的可信度和安全性。"
使用场景示例:
网络安全公司使用FakeShield检测和定位网络上流传的深度视频截图,以识别和阻止虚假信息的传播。
新闻机构利用FakeShield验证新闻图片的真实性,确保报道的准确性和公正性。
个人用户使用FakeShield分析社交媒体上的图片,以识别可能的图像篡改,保护自己免受虚假信息的影响。
产品特色:
领域标签引导的可解释检测:使用数据领域标签桥接不同类型数据之间的数据领域冲突,并引导多模态大语言模型生成检测结果和判断依据。
定位模块:使用DTE-FDM输出的篡改区域描述作为视觉分割模型的提示,引导其精确定位篡改区域。
多模态篡改描述数据集(MMTD-Set):通过GPT-4o生成篡改图像的分析和描述,构建“图像-掩码-描述”三元组以支持模型的多模态训练。
跨领域泛化能力:利用领域标签策略有效处理不同篡改类型之间的数据冲突,增强跨领域泛化能力。
高精度检测性能:在Photoshop、AIGC-Editing等数据集上展示了优于其他方法的检测准确性和F1分数。
详细的解释性能:通过余弦语义相似度(CSS)评估FakeShield的解释能力,生成与真实情况紧密对齐的篡改区域描述。
精确的定位性能:在多个测试集上实现了最高的IoU和F1分数,产生更清晰、更精确的篡改区域分割。
使用教程:
1. 访问FakeShield网站并了解产品概述和主要功能。
2. 阅读文档和教程,了解如何使用FakeShield进行图像检测和定位。
3. 下载并安装必要的软件或插件,以便在本地或云端环境中运行FakeShield。
4. 上传需要检测的图像文件到FakeShield平台。
5. 利用FakeShield的DTE-FDM模块进行图像检测,并获取检测结果。
6. 使用MFLM模块根据DTE-FDM的输出定位图像中的篡改区域。
7. 分析FakeShield提供的篡改区域描述和图像掩码,以深入了解篡改的性质和范围。
8. 根据FakeShield的检测和定位结果,采取相应的行动,如报告虚假内容、加强安全措施或进行进一步的调查。
浏览量:58
基于多模态大语言模型的可解释图像检测与定位
FakeShield是一个多模态框架,旨在解决图像检测和定位(IFDL)领域中的两个主要挑战:检测原理的黑箱性和在不同篡改方法间的有限泛化能力。FakeShield通过利用GPT-4o增强现有的IFDL数据集,创建了多模态篡改描述数据集(MMTD-Set),用于训练FakeShield的篡改分析能力。该框架包括领域标签引导的可解释检测模块(DTE-FDM)和定位模块(MFLM),能够处理各种类型的篡改检测解释,并实现由详细文本描述引导的定位。FakeShield在检测准确性和F1分数上优于其他方法,提供了一个可解释且优越的解决方案。
轻松构建自己的大模型,专属智慧,尽在本地。
Xark-Argo是一款桌面客户端产品,旨在帮助用户轻松构建和使用自己的大语言模型。它支持多种操作系统,包括MacOS和Windows,提供了强大的本地化模型部署能力。通过集成ollama技术,用户可以一键下载开源模型,并支持大模型API,如ChatGPT、Claude、Siliconflow等,大大降低了使用门槛。该产品适用于需要高效处理文本和知识管理的个人和企业用户,具有高度的灵活性和扩展性。目前暂无明确价格信息,但其功能定位表明它可能面向中高端用户群体。
NotaGen 是一个用于符号音乐生成的模型,采用大语言模型训练范式,专注于生成高质量古典乐谱。
NotaGen 是一款创新的符号音乐生成模型,通过预训练、微调和强化学习三个阶段提升音乐生成质量。它利用大语言模型技术,能够生成高质量的古典乐谱,为音乐创作带来新的可能性。该模型的主要优点包括高效生成、风格多样和高质量输出。它适用于音乐创作、教育和研究等领域,具有广泛的应用前景。
Atom of Thoughts (AoT) 是一种用于提升大语言模型推理性能的框架。
Atom of Thoughts (AoT) 是一种新型推理框架,通过将解决方案表示为原子问题的组合,将推理过程转化为马尔可夫过程。该框架通过分解和收缩机制,显著提升了大语言模型在推理任务上的性能,同时减少了计算资源的浪费。AoT 不仅可以作为独立的推理方法,还可以作为现有测试时扩展方法的插件,灵活结合不同方法的优势。该框架开源且基于 Python 实现,适合研究人员和开发者在自然语言处理和大语言模型领域进行实验和应用。
Spark-TTS 是一种基于大语言模型的高效单流解耦语音合成模型。
Spark-TTS 是一种基于大语言模型的高效文本到语音合成模型,具有单流解耦语音令牌的特性。它利用大语言模型的强大能力,直接从代码预测的音频进行重建,省略了额外的声学特征生成模型,从而提高了效率并降低了复杂性。该模型支持零样本文本到语音合成,能够跨语言和代码切换场景,非常适合需要高自然度和准确性的语音合成应用。它还支持虚拟语音创建,用户可以通过调整参数(如性别、音高和语速)来生成不同的语音。该模型的背景是为了解决传统语音合成系统中效率低下和复杂性高的问题,旨在为研究和生产提供高效、灵活且强大的解决方案。目前,该模型主要面向学术研究和合法应用,如个性化语音合成、辅助技术和语言研究等。
Level-Navi Agent是一个无需训练即可使用的框架,利用大语言模型进行深度查询理解和精准搜索。
Level-Navi Agent是一个开源的通用网络搜索代理框架,能够将复杂问题分解并逐步搜索互联网上的信息,直至回答用户问题。它通过提供Web24数据集,覆盖金融、游戏、体育、电影和事件等五大领域,为评估模型在搜索任务上的表现提供了基准。该框架支持零样本和少样本学习,为大语言模型在中文网络搜索代理领域的应用提供了重要参考。
用于多模态上下文中的检索增强生成的基准测试代码库。
M2RAG是一个用于多模态上下文中的检索增强生成的基准测试代码库。它通过多模态检索文档来回答问题,评估多模态大语言模型(MLLMs)在利用多模态上下文知识方面的能力。该模型在图像描述、多模态问答、事实验证和图像重排等任务上进行了评估,旨在提升模型在多模态上下文学习中的有效性。M2RAG为研究人员提供了一个标准化的测试平台,有助于推动多模态语言模型的发展。
TableGPT2-7B 是一款专注于表格数据处理的大语言模型,适用于数据分析和商业智能任务。
TableGPT2-7B 是由浙江大学开发的大规模解码器模型,专门用于处理数据密集型任务,尤其是表格数据的解读和分析。该模型基于 Qwen2.5 架构,通过持续预训练(CPT)和监督微调(SFT)优化,能够处理复杂的表格查询和商业智能(BI)应用。它支持中文查询,适合需要高效处理结构化数据的企业和研究机构。模型目前免费开源,未来可能会推出更专业的版本。
MoBA 是一种用于长文本上下文的混合块注意力机制,旨在提升大语言模型的效率。
MoBA(Mixture of Block Attention)是一种创新的注意力机制,专为长文本上下文的大语言模型设计。它通过将上下文划分为块,并让每个查询令牌学习关注最相关的块,从而实现高效的长序列处理。MoBA 的主要优点是能够在全注意力和稀疏注意力之间无缝切换,既保证了性能,又提高了计算效率。该技术适用于需要处理长文本的任务,如文档分析、代码生成等,能够显著降低计算成本,同时保持模型的高性能表现。MoBA 的开源实现为研究人员和开发者提供了强大的工具,推动了大语言模型在长文本处理领域的应用。
一款支持多模态功能的全功能大语言模型安卓应用。
MNN 大模型 Android App 是阿里巴巴开发的一款基于大语言模型(LLM)的安卓应用。它支持多种模态输入和输出,包括文本生成、图像识别、音频转录等。该应用通过优化推理性能,确保在移动设备上高效运行,同时保护用户数据隐私,所有处理均在本地完成。它支持多种领先的模型提供商,如 Qwen、Gemma、Llama 等,适用于多种场景。
百川智能开发的专为医疗场景优化的开源大语言模型,具备卓越的通用能力和医疗领域性能。
Baichuan-M1-14B 是由百川智能开发的开源大语言模型,专为医疗场景优化。它基于20万亿token的高质量医疗与通用数据训练,覆盖20多个医疗科室,具备强大的上下文理解和长序列任务表现能力。该模型在医疗领域表现出色,同时在通用任务中也达到了同尺寸模型的效果。其创新的模型结构和训练方法使其在医疗推理、病症判断等复杂任务中表现出色,为医疗领域的人工智能应用提供了强大的支持。
Doubao-1.5-pro 是一个高性能的稀疏 MoE 大语言模型,专注于推理性能与模型能力的极致平衡。
Doubao-1.5-pro 是由豆包团队开发的高性能稀疏 MoE(Mixture of Experts)大语言模型。该模型通过训练-推理一体化设计,实现了模型性能与推理性能的极致平衡。它在多个公开评测基准上表现出色,尤其在推理效率和多模态能力方面具有显著优势。该模型适用于需要高效推理和多模态交互的场景,如自然语言处理、图像识别和语音交互等。其技术背景基于稀疏激活的 MoE 架构,通过优化激活参数比例和训练算法,实现了比传统稠密模型更高的性能杠杆。此外,该模型还支持动态调整参数,以适应不同的应用场景和成本需求。
PaSa 是一个由大语言模型驱动的先进学术论文搜索代理,能够自主决策并获取准确结果。
PaSa 是由字节跳动开发的一种先进学术论文搜索代理,基于大语言模型(LLM)技术,能够自主调用搜索工具、阅读论文并筛选相关参考文献,以获取复杂学术查询的全面准确结果。该技术通过强化学习优化,使用合成数据集 AutoScholarQuery 进行训练,并在真实世界查询数据集 RealScholarQuery 上表现出色,显著优于传统搜索引擎和基于 GPT 的方法。PaSa 的主要优势在于其高召回率和精准率,能够为研究人员提供更高效的学术搜索体验。
VITA-1.5: 实时视觉和语音交互的GPT-4o级多模态大语言模型
VITA-1.5 是一款开源的多模态大语言模型,旨在实现接近实时的视觉和语音交互。它通过显著降低交互延迟和提升多模态性能,为用户提供更流畅的交互体验。该模型支持英语和中文,适用于多种应用场景,如图像识别、语音识别和自然语言处理等。其主要优点包括高效的语音处理能力和强大的多模态理解能力。
多模态大语言模型,提升多模态推理能力
InternVL2-8B-MPO是一个多模态大语言模型(MLLM),通过引入混合偏好优化(MPO)过程,增强了模型的多模态推理能力。该模型在数据方面设计了自动化的偏好数据构建管线,并构建了MMPR这一大规模多模态推理偏好数据集。在模型方面,InternVL2-8B-MPO基于InternVL2-8B初始化,并使用MMPR数据集进行微调,展现出更强的多模态推理能力,且幻觉现象更少。该模型在MathVista上取得了67.0%的准确率,超越InternVL2-8B 8.7个点,且表现接近于大10倍的InternVL2-76B。
模型评测平台
FlagEval是一个模型评测平台,专注于大语言模型和多模态模型的评测。它提供了一个公正、透明的环境,让不同的模型在同一标准下进行比较,帮助研究者和开发者了解模型性能,推动人工智能技术的发展。该平台涵盖了对话模型、视觉语言模型等多种模型类型,支持开源和闭源模型的评测,并提供专项评测如K12学科测验和金融量化交易评测。
多功能AI智能助手平台
ChatHi是一个多功能AI智能助手平台,提供包括文案创作、知识问答、代码编程、逻辑推演、数理推算等服务。平台依托于先进的大语言模型技术,如天工大模型、Claude系列模型以及G-3.5、G-4.0等,旨在提升用户工作效率和信息处理能力。产品背景信息显示,ChatHi由中国公司昆仑万维自研,对标国际先进的ChatGPT技术,具有强大的本土化优势和价格竞争力。
先进的大型混合专家视觉语言模型
DeepSeek-VL2是一系列先进的大型混合专家(MoE)视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解以及视觉定位等多种任务上展现出卓越的能力。DeepSeek-VL2由三种变体组成:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有10亿、28亿和45亿激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集型和基于MoE的模型相比,达到了竞争性或最先进的性能。
MMAudio根据视频和/或文本输入生成同步音频。
MMAudio是一种多模态联合训练技术,旨在高质量的视频到音频合成。该技术能够根据视频和文本输入生成同步音频,适用于各种应用场景,如影视制作、游戏开发等。其重要性在于提升了音频生成的效率和质量,适合需要音频合成的创作者和开发者使用。
基于InternViT-300M-448px的增强版本,提升视觉特征提取能力。
InternViT-300M-448px-V2_5是一个基于InternViT-300M-448px的增强版本,通过采用ViT增量学习与NTP损失(Stage 1.5),提升了视觉编码器提取视觉特征的能力,尤其是在大规模网络数据集中代表性不足的领域,如多语言OCR数据和数学图表等。该模型是InternViT 2.5系列的一部分,保留了与前代相同的“ViT-MLP-LLM”模型架构,并集成了新的增量预训练的InternViT与各种预训练的LLMs,如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。
视觉语言模型增强工具,结合生成式视觉编码器和深度广度融合技术。
Florence-VL是一个视觉语言模型,通过引入生成式视觉编码器和深度广度融合技术,增强了模型对视觉和语言信息的处理能力。该技术的重要性在于其能够提升机器对图像和文本的理解,进而在多模态任务中取得更好的效果。Florence-VL基于LLaVA项目进行开发,提供了预训练和微调的代码、模型检查点和演示。
视觉语言模型,能够进行逐步推理
LLaVA-o1是北京大学元组团队开发的一个视觉语言模型,它能够进行自发的、系统的推理,类似于GPT-o1。该模型在六个具有挑战性的多模态基准测试中超越了其他模型,包括Gemini-1.5-pro、GPT-4o-mini和Llama-3.2-90B-Vision-Instruct。LLaVA-o1通过逐步推理解决问题,展示了其在视觉语言模型中的独特优势。
基于LLM的智能字幕助手,一键生成高质量视频字幕
卡卡字幕助手(VideoCaptioner)是一款功能强大的视频字幕配制软件,利用大语言模型进行字幕智能断句、校正、优化、翻译,实现字幕视频全流程一键处理。产品无需高配置,操作简单,内置基础LLM模型,保证开箱即用,且消耗模型Token少,适合视频制作者和内容创作者。
视频序列理解的GPU实现模型
PPLLaVA是一个高效的视频大型语言模型,它结合了细粒度视觉提示对齐、用户指令的卷积风格池化的视觉令牌压缩以及CLIP上下文扩展。该模型在VideoMME、MVBench、VideoChatGPT Bench和VideoQA Bench等数据集上建立了新的最先进结果,仅使用1024个视觉令牌,吞吐量提高了8倍。
Agent S:一个开放的代理框架,让计算机像人类一样使用计算机。
Agent S是一个开放的代理框架,旨在通过图形用户界面(GUI)实现与计算机的自主交互,通过自动化复杂多步骤任务来转变人机交互。它引入了经验增强的分层规划方法,利用在线网络知识和叙事记忆,从过去的交互中提取高级经验,将复杂任务分解为可管理的子任务,并使用情景记忆进行逐步指导,Agent S不断优化其行动并从经验中学习,实现适应性强且有效的任务规划。Agent S在OSWorld基准测试中的表现超过了基线9.37%的成功率(相对提高了83.6%),并在WindowsAgentArena基准测试中展示了广泛的通用性。
全球大语言模型资源汇总
awesome-LLM-resourses是一个汇总了全球大语言模型(LLM)资源的平台,提供了从数据获取、微调、推理、评估到实际应用等一系列资源和工具。它的重要性在于为研究人员和开发者提供了一个全面的资源库,以便于他们能够更高效地开发和优化自己的语言模型。该平台由王荣胜维护,持续更新,为LLM领域的发展提供了强有力的支持。
一个支持B站直播的虚拟数字人项目
VirtualWife是一个虚拟数字人项目,旨在打造一个拥有自己“灵魂”的虚拟伴侣。该项目支持B站直播,并且兼容openai、ollama等大语言模型。VirtualWife不仅能够提供情感陪伴,还能作为恋爱导师和心理咨询师,满足人类的情感需求。项目处于孵化阶段,作者投入了大量的业余时间进行开发,希望用户能够通过点star来支持项目的发展。
视频指令调优与合成数据研究
LLaVA-Video是一个专注于视频指令调优的大型多模态模型(LMMs),通过创建高质量的合成数据集LLaVA-Video-178K来解决从网络获取大量高质量原始数据的难题。该数据集包括详细的视频描述、开放式问答和多项选择问答等任务,旨在提高视频语言模型的理解和推理能力。LLaVA-Video模型在多个视频基准测试中表现出色,证明了其数据集的有效性。
© 2025 AIbase 备案号:闽ICP备08105208号-14