需求人群:
"目标受众为研究人员、开发者以及企业用户,特别是那些需要处理多模态数据(如图像和文本)并希望提升模型推理能力的群体。InternVL2-8B-MPO能够提供更准确的数据分析和生成更可靠结果,适合用于提升产品智能化水平和决策支持。"
使用场景示例:
在MathVista数据集上进行准确率测试,达到67.0%的准确率。
使用InternVL2-8B-MPO进行图像描述生成,提供详细的图像内容描述。
在多图像推理任务中,比较不同图像间的相似性和差异性。
产品特色:
• 多模态推理能力提升:通过混合偏好优化(MPO)增强模型的多模态推理能力。
• 高准确率:在MathVista上达到67.0%的准确率,显著优于InternVL2-8B。
• 减少幻觉现象:与InternVL2-8B相比,幻觉现象更少。
• 支持多种部署方式:包括使用LMDeploy进行模型部署。
• 兼容多种语言:作为一个多语言模型,支持不同语言的理解和生成。
• 适用多种任务:包括图像-文本-文本任务,能够处理和生成与图像相关的文本。
• 模型微调:支持在多个平台上进行模型微调,以适应特定任务。
• 易于使用:提供详细的快速启动指南和API,方便用户快速上手。
使用教程:
1. 安装必要的库,如transformers和torch。
2. 使用AutoModel.from_pretrained加载InternVL2-8B-MPO模型。
3. 准备输入数据,包括文本和图像。
4. 使用模型进行推理,生成与输入相关的输出。
5. 根据需要对输出进行后处理,如文本格式化或图像显示。
6. 如有需要,可以对模型进行微调,以适应特定的应用场景。
7. 部署模型到生产环境,可以使用LMDeploy工具进行模型部署。
浏览量:46
最新流量情况
月访问量
25296.55k
平均访问时长
00:04:45
每次访问页数
5.83
跳出率
43.31%
流量来源
直接访问
48.39%
自然搜索
35.85%
邮件
0.03%
外链引荐
12.76%
社交媒体
2.96%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
17.08%
印度
8.40%
日本
3.42%
俄罗斯
4.58%
美国
17.94%
多模态大语言模型,提升多模态推理能力
InternVL2-8B-MPO是一个多模态大语言模型(MLLM),通过引入混合偏好优化(MPO)过程,增强了模型的多模态推理能力。该模型在数据方面设计了自动化的偏好数据构建管线,并构建了MMPR这一大规模多模态推理偏好数据集。在模型方面,InternVL2-8B-MPO基于InternVL2-8B初始化,并使用MMPR数据集进行微调,展现出更强的多模态推理能力,且幻觉现象更少。该模型在MathVista上取得了67.0%的准确率,超越InternVL2-8B 8.7个点,且表现接近于大10倍的InternVL2-76B。
Gemini 2.5 是谷歌最智能的 AI 模型,具备推理能力。
Gemini 2.5 是谷歌推出的最先进的 AI 模型,具备高效的推理能力和编码性能,能够处理复杂问题,并在多项基准测试中表现出色。该模型引入了新的思维能力,结合增强的基础模型和后期训练,支持更复杂的任务,旨在为开发者和企业提供强大的支持。Gemini 2.5 Pro 可在 Google AI Studio 和 Gemini 应用中使用,适合需要高级推理和编码能力的用户。
用于多模态上下文中的检索增强生成的基准测试代码库。
M2RAG是一个用于多模态上下文中的检索增强生成的基准测试代码库。它通过多模态检索文档来回答问题,评估多模态大语言模型(MLLMs)在利用多模态上下文知识方面的能力。该模型在图像描述、多模态问答、事实验证和图像重排等任务上进行了评估,旨在提升模型在多模态上下文学习中的有效性。M2RAG为研究人员提供了一个标准化的测试平台,有助于推动多模态语言模型的发展。
xAI推出的最新旗舰AI模型Grok 3,具备强大的推理和多模态处理能力。
Grok 3是由Elon Musk的AI公司xAI开发的最新旗舰AI模型。它在计算能力和数据集规模上显著提升,能够处理复杂的数学、科学问题,并支持多模态输入。其主要优点是推理能力强大,能够提供更准确的答案,并且在某些基准测试中超越了现有的顶尖模型。Grok 3的推出标志着xAI在AI领域的进一步发展,旨在为用户提供更智能、更高效的AI服务。该模型目前主要通过Grok APP和X平台提供服务,未来还将推出语音模式和企业API接口。其定位是高端AI解决方案,主要面向需要深度推理和多模态交互的用户。
MedRAX是一个用于胸部X光片解读的医疗推理AI代理,整合多种分析工具,无需额外训练即可处理复杂医疗查询。
MedRAX是一个创新的AI框架,专门用于胸部X光(CXR)的智能分析。它通过整合最先进的CXR分析工具和多模态大型语言模型,能够动态处理复杂的医疗查询。MedRAX无需额外训练即可运行,支持实时CXR解读,适用于多种临床场景。其主要优点包括高度的灵活性、强大的推理能力以及透明的工作流程。该产品面向医疗专业人员,旨在提高诊断效率和准确性,推动医疗AI的实用化。
一款支持多模态功能的全功能大语言模型安卓应用。
MNN 大模型 Android App 是阿里巴巴开发的一款基于大语言模型(LLM)的安卓应用。它支持多种模态输入和输出,包括文本生成、图像识别、音频转录等。该应用通过优化推理性能,确保在移动设备上高效运行,同时保护用户数据隐私,所有处理均在本地完成。它支持多种领先的模型提供商,如 Qwen、Gemma、Llama 等,适用于多种场景。
UI-TARS 是一个用于自动化图形用户界面交互的下一代原生 GUI 代理模型。
UI-TARS 是由字节跳动开发的一种新型 GUI 代理模型,专注于通过类似人类的感知、推理和行动能力与图形用户界面进行无缝交互。该模型将感知、推理、定位和记忆等关键组件集成到单一的视觉语言模型中,能够实现无需预定义工作流程或手动规则的端到端任务自动化。其主要优点包括强大的跨平台交互能力、多步任务执行能力以及从合成和真实数据中学习的能力,适用于多种自动化场景,如桌面、移动和网页环境。
Doubao-1.5-pro 是一个高性能的稀疏 MoE 大语言模型,专注于推理性能与模型能力的极致平衡。
Doubao-1.5-pro 是由豆包团队开发的高性能稀疏 MoE(Mixture of Experts)大语言模型。该模型通过训练-推理一体化设计,实现了模型性能与推理性能的极致平衡。它在多个公开评测基准上表现出色,尤其在推理效率和多模态能力方面具有显著优势。该模型适用于需要高效推理和多模态交互的场景,如自然语言处理、图像识别和语音交互等。其技术背景基于稀疏激活的 MoE 架构,通过优化激活参数比例和训练算法,实现了比传统稠密模型更高的性能杠杆。此外,该模型还支持动态调整参数,以适应不同的应用场景和成本需求。
Gemini 2.0 Flash Thinking Experimental 是一款增强推理模型,能够展示其思考过程以提升性能和可解释性。
Gemini Flash Thinking 是 Google DeepMind 推出的最新 AI 模型,专为复杂任务设计。它能够展示推理过程,帮助用户更好地理解模型的决策逻辑。该模型在数学和科学领域表现出色,支持长文本分析和代码执行功能。它旨在为开发者提供强大的工具,以推动人工智能在复杂任务中的应用。
Kimi k1.5 是一个通过强化学习扩展的多模态语言模型,专注于提升推理和逻辑能力。
Kimi k1.5 是由 MoonshotAI 开发的多模态语言模型,通过强化学习和长上下文扩展技术,显著提升了模型在复杂推理任务中的表现。该模型在多个基准测试中达到了行业领先水平,例如在 AIME 和 MATH-500 等数学推理任务中超越了 GPT-4o 和 Claude Sonnet 3.5。其主要优点包括高效的训练框架、强大的多模态推理能力以及对长上下文的支持。Kimi k1.5 主要面向需要复杂推理和逻辑分析的应用场景,如编程辅助、数学解题和代码生成等。
这是一个先进的多模态大型语言模型系列,展示了卓越的整体性能。
InternVL2.5-MPO是一个基于InternVL2.5和混合偏好优化(MPO)的多模态大型语言模型系列。它在多模态任务中表现出色,通过整合新近增量预训练的InternViT与多种预训练的大型语言模型(LLMs),如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。该模型系列在多模态推理偏好数据集MMPR上进行了训练,包含约300万个样本,通过有效的数据构建流程和混合偏好优化技术,提升了模型的推理能力和回答质量。
VITA-1.5: 实时视觉和语音交互的GPT-4o级多模态大语言模型
VITA-1.5 是一款开源的多模态大语言模型,旨在实现接近实时的视觉和语音交互。它通过显著降低交互延迟和提升多模态性能,为用户提供更流畅的交互体验。该模型支持英语和中文,适用于多种应用场景,如图像识别、语音识别和自然语言处理等。其主要优点包括高效的语音处理能力和强大的多模态理解能力。
Google新一代AI模型,开启智能助理新时代。
Gemini 2.0是Google DeepMind推出的最新AI模型,旨在为“智能助理时代”提供支持。该模型在多模态能力上进行了升级,包括原生图像和音频输出以及工具使用能力,使得构建新的AI智能助理更加接近通用助理的愿景。Gemini 2.0的发布,标志着Google在AI领域的深入探索和持续创新,通过提供更强大的信息处理和输出能力,使得信息更加有用,为用户带来更高效和便捷的体验。
大规模多模态推理与指令调优平台
MAmmoTH-VL是一个大规模多模态推理平台,它通过指令调优技术,显著提升了多模态大型语言模型(MLLMs)在多模态任务中的表现。该平台使用开放模型创建了一个包含1200万指令-响应对的数据集,覆盖了多样化的、推理密集型的任务,并提供了详细且忠实的理由。MAmmoTH-VL在MathVerse、MMMU-Pro和MuirBench等基准测试中取得了最先进的性能,展现了其在教育和研究领域的重要性。
开源大语言模型,匹配专有强大能力。
Open O1是一个开源项目,旨在通过开源创新,匹配专有的强大O1模型能力。该项目通过策划一组O1风格的思考数据,用于训练LLaMA和Qwen模型,赋予了这些较小模型更强大的长期推理和解决问题的能力。随着Open O1项目的推进,我们将继续推动大型语言模型的可能性,我们的愿景是创建一个不仅能够实现类似O1的性能,而且在测试时扩展性方面也处于领先地位的模型,使高级AI能力为所有人所用。通过社区驱动的开发和对道德实践的承诺,Open O1将成为AI进步的基石,确保技术的未来发展是开放的,并对所有人有益。
微软轻量级、先进的多模态模型,专注于文本和视觉的高质量推理密集数据。
Phi-3 Vision是一个轻量级、最先进的开放多模态模型,基于包括合成数据和经过筛选的公开可用网站在内的数据集构建,专注于文本和视觉的非常高质量的推理密集数据。该模型属于Phi-3模型家族,多模态版本支持128K上下文长度(以token计),经过严格的增强过程,结合了监督微调和直接偏好优化,以确保精确的指令遵循和强大的安全措施。
面向长期视频理解的大规模多模态模型
MA-LMM是一种基于大语言模型的大规模多模态模型,主要针对长期视频理解进行设计。它采用在线处理视频的方式,并使用记忆库存储过去的视频信息,从而可以在不超过语言模型上下文长度限制或GPU内存限制的情况下,参考历史视频内容进行长期分析。MA-LMM可以无缝集成到当前的多模态语言模型中,并在长视频理解、视频问答和视频字幕等任务上取得了领先的性能。
基于开发者构建的生产 AI 平台
Fireworks 与世界领先的生成式 AI 研究人员合作,以最快的速度提供最佳模型。拥有经 Fireworks 精心筛选和优化的模型,以及企业级吞吐量和专业的技术支持。定位为最快速且最可靠的 AI 平台。
文档理解的模块化多模态大语言模型
mPLUG-DocOwl 是一款用于文档理解的模块化多模态大语言模型,能够处理 OCR-free 文档理解任务。该模型具有出色的性能表现,支持文档视觉问答、信息问答、图表问答等多种任务。用户可以通过模型提供的在线演示来体验其强大功能。
基于多模态的 AI 模型,无缝进行图像、视频、音频和代码的推理
Google Gemini 是一款基于多模态的 AI 模型,能够无缝进行图像、视频、音频和代码的推理。Gemini 是 DeepMind 推出的最先进的 AI 模型,能够在 MMLU(大规模多任务语言理解)等各项测试中超越人类专家。Gemini 具有出色的推理能力,在各种多模态任务中取得了最先进的性能。
全球最强的编程和推理模型,提升开发效率。
Claude 4 是 Anthropic 最新推出的 AI 模型系列,具备强大的编程和推理能力,能够高效处理复杂任务。其卓越的性能使其在编程基准测试中名列前茅,成为开发者的重要工具。Claude 4 通过多项新功能的引入,提升了信息处理的效率和准确性,适合需要高效编码和逻辑推理的用户。
BAGEL是一款开源的统一多模态模型,您可以在任何地方进行微调、精简和部署。
BAGEL是一款可扩展的统一多模态模型,它正在革新AI与复杂系统的交互方式。该模型具有对话推理、图像生成、编辑、风格转移、导航、构图、思考等功能,通过深度学习视频和网络数据进行预训练,为生成高保真度、逼真图像提供了基础。
一款轻量级的多模态语言模型安卓应用。
MNN-LLM 是一款高效的推理框架,旨在优化和加速大语言模型在移动设备和本地 PC 上的部署。它通过模型量化、混合存储和硬件特定优化,解决高内存消耗和计算成本的问题。MNN-LLM 在 CPU 基准测试中表现卓越,速度显著提升,适合需要隐私保护和高效推理的用户。
多模态驱动的定制视频生成架构。
HunyuanCustom 是一个多模态定制视频生成框架,旨在根据用户定义的条件生成特定主题的视频。该技术在身份一致性和多种输入模式的支持上表现出色,能够处理文本、图像、音频和视频输入,适合虚拟人广告、视频编辑等多种应用场景。
一个旨在推动人工智能民主化的开源项目。
DeepSeek-Prover-V2-671B 是一个先进的人工智能模型,旨在提供强大的推理能力。它基于最新的技术,适用于多种应用场景。该模型是开源的,旨在促进人工智能技术的民主化与普及,降低技术壁垒,使更多开发者和研究者能够利用 AI 技术进行创新。通过使用该模型,用户可以提升他们的工作效率,推动各类项目的进展。
利用强化学习提升扩散大语言模型的推理能力。
该模型通过强化学习和高质量推理轨迹的掩蔽自监督微调,实现了对扩散大语言模型的推理能力的提升。此技术的重要性在于它能够优化模型的推理过程,减少计算成本,同时保证学习动态的稳定性。适合希望在写作和推理任务中提升效率的用户。
© 2025 AIbase 备案号:闽ICP备08105208号-14