需求人群:
"适用于自然语言处理任务,如文本生成、机器翻译、对话系统等。"
使用场景示例:
使用 TinyGPT-V 进行文本生成任务
将 TinyGPT-V 应用于机器翻译任务
使用 TinyGPT-V 构建智能对话系统
产品特色:
高效多模态大型语言模型
强大的语言理解和生成能力
适用于各种自然语言处理任务
使用小型骨干网络实现
基于 Phi-2 进行预训练
浏览量:87
最新流量情况
月访问量
5.21m
平均访问时长
00:06:29
每次访问页数
6.12
跳出率
35.96%
流量来源
直接访问
52.10%
自然搜索
32.78%
邮件
0.05%
外链引荐
12.82%
社交媒体
2.16%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.96%
德国
3.65%
印度
9.02%
俄罗斯
4.03%
美国
19.10%
高效多模态大型语言模型
TinyGPT-V 是一种高效的多模态大型语言模型,通过使用小型骨干网络来实现。它具有强大的语言理解和生成能力,适用于各种自然语言处理任务。TinyGPT-V 采用 Phi-2 作为预训练模型,具备出色的性能和效率。
Inception Labs 推出新一代扩散式大语言模型,提供极速、高效和高质量的语言生成能力。
Inception Labs 是一家专注于开发扩散式大语言模型(dLLMs)的公司。其技术灵感来源于先进的图像和视频生成系统,如 Midjourney 和 Sora。通过扩散模型,Inception Labs 提供了比传统自回归模型快 5-10 倍的速度、更高的效率和更强的生成控制能力。其模型支持并行文本生成,能够纠正错误和幻觉,适合多模态任务,并且在推理和结构化数据生成方面表现出色。公司由斯坦福、UCLA 和康奈尔大学的研究人员和工程师组成,是扩散模型领域的先驱。
Instella 是由 AMD 开发的高性能开源语言模型,专为加速开源语言模型的发展而设计。
Instella 是由 AMD GenAI 团队开发的一系列高性能开源语言模型,基于 AMD Instinct™ MI300X GPU 训练而成。该模型在性能上显著优于同尺寸的其他开源语言模型,并且在功能上与 Llama-3.2-3B 和 Qwen2.5-3B 等模型相媲美。Instella 提供模型权重、训练代码和训练数据,旨在推动开源语言模型的发展。其主要优点包括高性能、开源开放以及对 AMD 硬件的优化支持。
ViDoRAG 是一个结合视觉文档检索增强生成的动态迭代推理代理框架。
ViDoRAG 是阿里巴巴自然语言处理团队开发的一种新型多模态检索增强生成框架,专为处理视觉丰富文档的复杂推理任务设计。该框架通过动态迭代推理代理和高斯混合模型(GMM)驱动的多模态检索策略,显著提高了生成模型的鲁棒性和准确性。ViDoRAG 的主要优点包括高效处理视觉和文本信息、支持多跳推理以及可扩展性强。该框架适用于需要从大规模文档中检索和生成信息的场景,例如智能问答、文档分析和内容创作。其开源特性和灵活的模块化设计使其成为研究人员和开发者在多模态生成领域的重要工具。
Migician 是一个专注于多图像定位的多模态大语言模型,能够实现自由形式的多图像精确定位。
Migician 是清华大学自然语言处理实验室开发的一种多模态大语言模型,专注于多图像定位任务。该模型通过引入创新的训练框架和大规模数据集 MGrounding-630k,显著提升了多图像场景下的精确定位能力。它不仅超越了现有的多模态大语言模型,甚至在性能上超过了更大规模的 70B 模型。Migician 的主要优点在于其能够处理复杂的多图像任务,并提供自由形式的定位指令,使其在多图像理解领域具有重要的应用前景。该模型目前在 Hugging Face 上开源,供研究人员和开发者使用。
Gemini 2.0 Flash-Lite 是高效的语言模型,专为长文本处理和多种应用场景优化。
Gemini 2.0 Flash-Lite 是 Google 推出的高效语言模型,专为长文本处理和复杂任务优化。它在推理、多模态、数学和事实性基准测试中表现出色,具备简化的价格策略,使得百万级上下文窗口更加经济实惠。Gemini 2.0 Flash-Lite 已在 Google AI Studio 和 Vertex AI 中全面开放,适合企业级生产使用。
DeepSeek 是一款先进的 AI 语言模型,擅长逻辑推理、数学和编程任务,提供免费使用。
DeepSeek 是由 High-Flyer 基金支持的中国 AI 实验室开发的先进语言模型,专注于开源模型和创新训练方法。其 R1 系列模型在逻辑推理和问题解决方面表现出色,采用强化学习和混合专家框架优化性能,以低成本实现高效训练。DeepSeek 的开源策略推动了社区创新,同时引发了关于 AI 竞争和开源模型影响力的行业讨论。其免费且无需注册的使用方式进一步降低了用户门槛,适合广泛的应用场景。
Moonlight-16B-A3B 是一个基于 Muon 优化器训练的 16B 参数的混合专家模型,用于高效的语言生成。
Moonlight-16B-A3B 是由 Moonshot AI 开发的一种大规模语言模型,采用先进的 Muon 优化器进行训练。该模型通过优化训练效率和性能,显著提升了语言生成的能力。其主要优点包括高效的优化器设计、较少的训练 FLOPs 和卓越的性能表现。该模型适用于需要高效语言生成的场景,如自然语言处理、代码生成和多语言对话等。其开源的实现和预训练模型为研究人员和开发者提供了强大的工具。
Xwen-Chat是专注中文对话的大语言模型集合,提供多版本模型及语言生成服务
Xwen-Chat由xwen-team开发,为满足高质量中文对话模型需求而生,填补领域空白。其有多个版本,具备强大语言理解与生成能力,可处理复杂语言任务,生成自然对话内容,适用于智能客服等场景,在Hugging Face平台免费提供。
Janus-Pro-1B 是一个统一多模态理解和生成的自回归框架。
Janus-Pro-1B 是一个创新的多模态模型,专注于统一多模态理解和生成。它通过分离视觉编码路径,解决了传统方法在理解和生成任务中的冲突问题,同时保持了单个统一的 Transformer 架构。这种设计不仅提高了模型的灵活性,还使其在多模态任务中表现出色,甚至超越了特定任务的模型。该模型基于 DeepSeek-LLM-1.5b-base/DeepSeek-LLM-7b-base 构建,使用 SigLIP-L 作为视觉编码器,支持 384x384 的图像输入,并采用特定的图像生成 tokenizer。其开源性和灵活性使其成为下一代多模态模型的有力候选。
VideoLLaMA3是前沿的多模态基础模型,专注于图像和视频理解。
VideoLLaMA3是由DAMO-NLP-SG团队开发的前沿多模态基础模型,专注于图像和视频理解。该模型基于Qwen2.5架构,结合了先进的视觉编码器(如SigLip)和强大的语言生成能力,能够处理复杂的视觉和语言任务。其主要优点包括高效的时空建模能力、强大的多模态融合能力以及对大规模数据的优化训练。该模型适用于需要深度视频理解的应用场景,如视频内容分析、视觉问答等,具有广泛的研究和商业应用潜力。
强大的语言模型,拥有4560亿总参数,可处理长达400万token的上下文。
MiniMax-01是一个具有4560亿总参数的强大语言模型,其中每个token激活459亿参数。它采用混合架构,结合了闪电注意力、softmax注意力和专家混合(MoE),通过先进的并行策略和创新的计算-通信重叠方法,如线性注意力序列并行主义加(LASP+)、varlen环形注意力、专家张量并行(ETP)等,将训练上下文长度扩展到100万tokens,在推理时可处理长达400万tokens的上下文。在多个学术基准测试中,MiniMax-01展现了顶级模型的性能。
MiniCPM-o 2.6是一个强大的多模态大型语言模型,适用于视觉、语音和多模态直播。
MiniCPM-o 2.6是MiniCPM-o系列中最新且功能最强大的模型。该模型基于SigLip-400M、Whisper-medium-300M、ChatTTS-200M和Qwen2.5-7B构建,拥有8B参数。它在视觉理解、语音交互和多模态直播方面表现出色,支持实时语音对话和多模态直播功能。该模型在开源社区中表现优异,超越了多个知名模型。其优势在于高效的推理速度、低延迟、低内存和功耗,能够在iPad等终端设备上高效支持多模态直播。此外,MiniCPM-o 2.6易于使用,支持多种使用方式,包括llama.cpp的CPU推理、int4和GGUF格式的量化模型、vLLM的高吞吐量推理等。
MiniCPM-o 2.6:一款GPT-4o级别,可在手机上实现视觉、语音和多模态直播的MLLM。
MiniCPM-o 2.6 是OpenBMB团队开发的最新多模态大型语言模型(MLLM),具有8B参数,能够在手机等端侧设备上实现高质量的视觉、语音和多模态直播功能。该模型基于SigLip-400M、Whisper-medium-300M、ChatTTS-200M和Qwen2.5-7B构建,采用端到端的方式训练,性能与GPT-4o-202405相当。其主要优点包括领先的视觉能力、先进的语音能力、强大的多模态直播能力、强大的OCR能力以及优越的效率。该模型免费开源,适用于学术研究和商业用途。
一种无需实时检索的语言模型增强方法,通过预加载知识缓存来提高生成效率。
CAG(Cache-Augmented Generation)是一种创新的语言模型增强技术,旨在解决传统RAG(Retrieval-Augmented Generation)方法中存在的检索延迟、检索错误和系统复杂性等问题。通过在模型上下文中预加载所有相关资源并缓存其运行时参数,CAG能够在推理过程中直接生成响应,无需进行实时检索。这种方法不仅显著降低了延迟,提高了可靠性,还简化了系统设计,使其成为一种实用且可扩展的替代方案。随着大型语言模型(LLMs)上下文窗口的不断扩展,CAG有望在更复杂的应用场景中发挥作用。
多模态大型语言模型,展示卓越的整体性能。
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,它基于InternVL2.5和混合偏好优化构建。该模型整合了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL2.5-MPO在新版本中保留了与InternVL 2.5及其前身相同的模型架构,遵循“ViT-MLP-LLM”范式。该模型支持多图像和视频数据,通过混合偏好优化(MPO)进一步提升模型性能,使其在多模态任务中表现更优。
一款高效率的2.4亿参数轻量级语言模型
YuLan-Mini是由中国人民大学AI Box团队开发的一款轻量级语言模型,具有2.4亿参数,尽管仅使用1.08T的预训练数据,但其性能可与使用更多数据训练的行业领先模型相媲美。该模型特别擅长数学和代码领域,为了促进可复现性,团队将开源相关的预训练资源。
多模态大型语言模型,展示卓越的整体性能
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,基于InternVL2.5和混合偏好优化构建。该模型集成了新增量预训练的InternViT和各种预训练的大型语言模型,如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。它支持多图像和视频数据,并且在多模态任务中表现出色,能够理解和生成与图像相关的文本内容。
一站式大模型算法、模型及优化工具开源项目
FlagAI是由北京智源人工智能研究院推出的一站式、高质量开源项目,集成了全球各种主流大模型算法技术以及多种大模型并行处理和训练加速技术。它支持高效训练和微调,旨在降低大模型开发和应用的门槛,提高开发效率。FlagAI涵盖了多个领域明星模型,如语言大模型OPT、T5,视觉大模型ViT、Swin Transformer,多模态大模型CLIP等。智源研究院也持续将“悟道2.0”“悟道3.0”大模型项目成果开源至FlagAI,目前该项目已经加入Linux基金会,吸引全球科研力量共同创新、共同贡献。
先进的多模态大型语言模型
InternVL2_5-2B-MPO是一个多模态大型语言模型系列,展示了卓越的整体性能。该系列基于InternVL2.5和混合偏好优化构建。它集成了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。该模型在多模态任务中表现出色,能够处理包括图像和文本在内的多种数据类型,适用于需要理解和生成多模态内容的场景。
多模态大型语言模型,提升视觉和语言的综合理解能力
InternVL2_5-1B-MPO是一个多模态大型语言模型(MLLM),它基于InternVL2.5和混合偏好优化(MPO)构建,展示了优越的整体性能。该模型集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL2.5-MPO在模型架构上保留了与InternVL 2.5及其前身相同的“ViT-MLP-LLM”范式,并引入了对多图像和视频数据的支持。该模型在多模态任务中表现出色,能够处理包括图像描述、视觉问答等多种视觉语言任务。
3D人体动作的言语和非言语语言统一模型
这是一个由斯坦福大学研究团队开发的多模态语言模型框架,旨在统一3D人体动作中的言语和非言语语言。该模型能够理解并生成包含文本、语音和动作的多模态数据,对于创建能够自然交流的虚拟角色至关重要,广泛应用于游戏、电影和虚拟现实等领域。该模型的主要优点包括灵活性高、训练数据需求少,并且能够解锁如可编辑手势生成和从动作中预测情感等新任务。
WePOINTS项目,提供多模态模型的统一框架
WePOINTS是由微信AI团队开发的一系列多模态模型,旨在创建一个统一框架,容纳各种模态。这些模型利用最新的多模态模型进展和技术,推动内容理解和生成的无缝统一。WePOINTS项目不仅提供了模型,还包括了预训练数据集、评估工具和使用教程,是多模态人工智能领域的重要贡献。
先进的多模态大型语言模型系列
InternVL 2.5是OpenGVLab推出的多模态大型语言模型系列,它在InternVL 2.0的基础上进行了显著的训练和测试策略增强,以及数据质量提升。该模型系列能够处理图像、文本和视频数据,具备多模态理解和生成的能力,是当前多模态人工智能领域的前沿产品。InternVL 2.5系列模型以其高性能和开源特性,为多模态任务提供了强大的支持。
高性能英文语言模型,适用于多样化任务
OLMo-2-1124-13B-DPO是经过监督微调和DPO训练的13B参数大型语言模型,主要针对英文,旨在提供在聊天、数学、GSM8K和IFEval等多种任务上的卓越性能。该模型是OLMo系列的一部分,旨在推动语言模型的科学研究。模型训练基于Dolma数据集,并公开代码、检查点、日志和训练细节。
科学文献合成的检索增强型语言模型
OpenScholar是一个检索增强型语言模型(LM),旨在通过首先搜索文献中的相关论文,然后基于这些来源生成回答,来帮助科学家有效地导航和综合科学文献。该模型对于处理每年发表的数百万篇科学论文,以及帮助科学家找到他们需要的信息或跟上单一子领域最新发现具有重要意义。
高性能的英文学术基准语言模型
OLMo 2 13B是由Allen Institute for AI (Ai2)开发的一款基于Transformer的自回归语言模型,专注于英文学术基准测试。该模型在训练过程中使用了高达5万亿个token,展现出与同等规模的全开放模型相媲美或更优的性能,并在英语学术基准上与Meta和Mistral的开放权重模型竞争。OLMo 2 13B的发布包括所有代码、检查点、日志和相关的训练细节,旨在推动语言模型的科学研究。
最先进的全开放语言模型
OLMo 2是由Ai2推出的最新全开放语言模型,包括7B和13B两种规模的模型,训练数据高达5T tokens。这些模型在性能上与同等规模的全开放模型相当或更优,并且在英语学术基准测试中与开放权重模型如Llama 3.1竞争。OLMo 2的开发注重模型训练的稳定性、阶段性训练干预、最先进的后训练方法和可操作的评估框架。这些技术的应用使得OLMo 2在多个任务上表现出色,特别是在知识回忆、常识、一般和数学推理方面。
© 2025 AIbase 备案号:闽ICP备08105208号-14