需求人群:
"目标受众包括研究人员、开发者和企业用户,他们需要在各种应用中利用图像和文本的结合来提升 AI 系统的性能。"
使用场景示例:
视觉问题回答(VQA):用户可以上传图片并询问有关图像的问题,模型会给出答案。
文档视觉问题回答(DocVQA):模型可以理解文档的文本和布局,然后回答有关图像的问题。
图像描述:为社交媒体上的图片自动生成描述性文字。
图像-文本检索:帮助用户找到与他们上传的图片内容相匹配的文本描述。
产品特色:
视觉识别:优化模型以识别图像中的对象和场景。
图像推理:使模型能够理解图像内容并进行逻辑推理。
图像描述:生成描述图像内容的文本。
回答有关图像的问题:理解图像并回答用户基于图像的问题。
支持多语言:虽然图像+文本应用仅支持英文,但模型在文本任务上支持英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。
遵守社区许可协议:使用 Llama 3.2 社区许可协议进行规范。
负责任的部署:遵循 Meta 的最佳实践,确保模型的安全和有用性。
使用教程:
1. 安装 transformers 库:确保已安装 transformers 库并更新到最新版本。
2. 加载模型:使用 transformers 库中的 MllamaForConditionalGeneration 和 AutoProcessor 类加载模型和处理器。
3. 准备输入:将图像和文本提示组合成模型可接受的输入格式。
4. 生成文本:调用模型的 generate 方法生成基于输入图像和提示的文本。
5. 输出处理:将生成的文本解码并展示给用户。
6. 遵守许可协议:在使用模型时,确保遵守 Llama 3.2 社区许可协议中的条款。
浏览量:161
最新流量情况
月访问量
25296.55k
平均访问时长
00:04:45
每次访问页数
5.83
跳出率
43.31%
流量来源
直接访问
48.39%
自然搜索
35.85%
邮件
0.03%
外链引荐
12.76%
社交媒体
2.96%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
多模态大型语言模型,支持图像和文本处理。
Llama-3.2-11B-Vision 是 Meta 发布的一款多模态大型语言模型(LLMs),它结合了图像和文本处理的能力,旨在提高视觉识别、图像推理、图像描述和回答有关图像的一般问题的性能。该模型在常见的行业基准测试中的表现超过了众多开源和封闭的多模态模型。
首个多模态 Mistral 模型,支持图像和文本的混合任务处理。
Pixtral 12B 是 Mistral AI 团队开发的一款多模态 AI 模型,它能够理解自然图像和文档,具备出色的多模态任务处理能力,同时在文本基准测试中也保持了最先进的性能。该模型支持多种图像尺寸和宽高比,能够在长上下文窗口中处理任意数量的图像,是 Mistral Nemo 12B 的升级版,专为多模态推理而设计,不牺牲关键文本处理能力。
多模态大型模型,处理文本、图像和视频数据
Valley-Eagle-7B是由字节跳动开发的多模态大型模型,旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,并在OpenCompass测试中展现出与同规模模型相比的卓越性能。Valley-Eagle-7B结合了LargeMLP和ConvAdapter构建投影器,并引入了VisionEncoder,以增强模型在极端场景下的性能。
高效能的长文本处理AI模型
AI21-Jamba-1.5-Mini是AI21实验室开发的最新一代混合SSM-Transformer指令跟随基础模型。这款模型以其卓越的长文本处理能力、速度和质量在市场上脱颖而出,相较于同类大小的领先模型,推理速度提升高达2.5倍。Jamba 1.5 Mini和Jamba 1.5 Large专为商业用例和功能进行了优化,如函数调用、结构化输出(JSON)和基础生成。
高效能长文本处理AI模型
Jamba 1.5 Open Model Family是AI21公司推出的最新AI模型系列,基于SSM-Transformer架构,具有超长文本处理能力、高速度和高质量,是市场上同类产品中表现最优的。这些模型专为企业级应用设计,考虑了资源效率、质量、速度和解决关键任务的能力。
Gemini 2.0 Flash-Lite 是高效的语言模型,专为长文本处理和多种应用场景优化。
Gemini 2.0 Flash-Lite 是 Google 推出的高效语言模型,专为长文本处理和复杂任务优化。它在推理、多模态、数学和事实性基准测试中表现出色,具备简化的价格策略,使得百万级上下文窗口更加经济实惠。Gemini 2.0 Flash-Lite 已在 Google AI Studio 和 Vertex AI 中全面开放,适合企业级生产使用。
用AI处理文本
Plus on Setapp是一款AI助手应用,可以帮助您撰写、翻译、总结和解释文本。它可以在任何应用程序中选择文本,并通过简单的快捷键将其发送给AI助手,让它帮您改进、校对、总结、解释或翻译文本。此外,您还可以自定义提示来完成特定任务。Plus on Setapp是Setapp订阅服务中的一部分,订阅费用为9.99美元/月。
多模态大型语言模型,优化图像与文本交互能力
InternVL2_5-4B-MPO-AWQ是一个多模态大型语言模型(MLLM),专注于提升模型在图像和文本交互任务中的表现。该模型基于InternVL2.5系列,并通过混合偏好优化(MPO)进一步提升性能。它能够处理包括单图像和多图像、视频数据在内的多种输入,适用于需要图像和文本交互理解的复杂任务。InternVL2_5-4B-MPO-AWQ以其卓越的多模态能力,为图像-文本到文本的任务提供了一个强大的解决方案。
一框架,统一所有语言模态
OneLLM是一个旨在统一所有语言模态的框架。它提供了预览模型,并允许本地演示。该框架的功能包括模型安装、模型预览和本地演示。OneLLM的优势在于能够统一不同的模态,如图像和文本,以及语音和文本。该框架的定位是为了简化多模态任务的处理。
多模态12B参数模型,结合视觉编码器处理图像和文本。
Pixtral-12B-2409是由Mistral AI团队开发的多模态模型,包含12B参数的多模态解码器和400M参数的视觉编码器。该模型在多模态任务中表现出色,支持不同尺寸的图像,并在文本基准测试中保持最前沿的性能。它适用于需要处理图像和文本数据的高级应用,如图像描述生成、视觉问答等。
多模态大型模型,处理文本、图像和视频数据
Valley是由字节跳动开发的尖端多模态大型模型,能够处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,比其他开源模型表现更优。在OpenCompass测试中,与同规模模型相比,平均得分大于等于67.40,在小于10B模型中排名第二。Valley-Eagle版本参考了Eagle,引入了一个可以灵活调整令牌数量并与原始视觉令牌并行的视觉编码器,增强了模型在极端场景下的性能。
增强文本与视觉任务处理能力的开源模型。
Mistral-Small-3.1-24B-Base-2503 是一款具有 240 亿参数的先进开源模型,支持多语言和长上下文处理,适用于文本与视觉任务。它是 Mistral Small 3.1 的基础模型,具有较强的多模态能力,适合企业需求。
多模态语言模型,融合文本和语音
Spirit LM是一个基础多模态语言模型,能够自由混合文本和语音。该模型基于一个7B预训练的文本语言模型,通过持续在文本和语音单元上训练来扩展到语音模式。语音和文本序列被串联为单个令牌流,并使用一个小的自动策划的语音-文本平行语料库,采用词级交错方法进行训练。Spirit LM有两个版本:基础版使用语音音素单元(HuBERT),而表达版除了音素单元外,还使用音高和风格单元来模拟表达性。对于两个版本,文本都使用子词BPE令牌进行编码。该模型不仅展现了文本模型的语义能力,还展现了语音模型的表达能力。此外,我们展示了Spirit LM能够在少量样本的情况下跨模态学习新任务(例如ASR、TTS、语音分类)。
一款由XTuner优化的LLaVA模型,结合了图像和文本处理能力。
llava-llama-3-8b-v1_1是一个由XTuner优化的LLaVA模型,它基于meta-llama/Meta-Llama-3-8B-Instruct和CLIP-ViT-Large-patch14-336,并通过ShareGPT4V-PT和InternVL-SFT进行了微调。该模型专为图像和文本的结合处理而设计,具有强大的多模态学习能力,适用于各种下游部署和评估工具包。
256M参数的医学领域语言模型,用于医学文本处理等任务
SmolDocling-256M-preview是由ds4sd推出的一个具有256M参数的语言模型,专注于医学领域。其重要性在于为医学文本处理、医学知识提取等任务提供了有效的工具。在医学研究和临床实践中,大量的文本数据需要进行分析和处理,该模型能够理解和处理医学专业语言。主要优点包括在医学领域有较好的性能表现,能够处理多种医学相关的文本任务,如疾病诊断辅助、医学文献摘要等。该模型的背景是随着医学数据的增长,对处理医学文本的技术需求日益增加。其定位是为医学领域的研究人员、医生、开发者等提供语言处理能力支持,目前未提及价格相关信息。
先进的多模态大型语言模型,具备卓越的多模态推理能力。
InternVL2_5-26B-MPO-AWQ 是由 OpenGVLab 开发的多模态大型语言模型,旨在通过混合偏好优化提升模型的推理能力。该模型在多模态任务中表现出色,能够处理图像和文本之间的复杂关系。它采用了先进的模型架构和优化技术,使其在多模态数据处理方面具有显著优势。该模型适用于需要高效处理和理解多模态数据的场景,如图像描述生成、多模态问答等。其主要优点包括强大的推理能力和高效的模型架构。
前沿级别的AI模型,提供顶级的指令遵循和长文本处理能力。
EXAONE 3.5是LG AI Research发布的一系列人工智能模型,这些模型以其卓越的性能和成本效益而著称。它们在模型训练效率、去污染处理、长文本理解和指令遵循能力方面表现出色。EXAONE 3.5模型的开发遵循了LG的AI伦理原则,进行了AI伦理影响评估,以确保模型的负责任使用。这些模型的发布旨在推动AI研究和生态系统的发展,并为AI创新奠定基础。
SmolVLM-256M 是世界上最小的多模态模型,可高效处理图像和文本输入并生成文本输出。
SmolVLM-256M 是由 Hugging Face 开发的多模态模型,基于 Idefics3 架构,专为高效处理图像和文本输入而设计。它能够回答关于图像的问题、描述视觉内容或转录文本,且仅需不到 1GB 的 GPU 内存即可运行推理。该模型在多模态任务上表现出色,同时保持轻量化架构,适合在设备端应用。其训练数据来自 The Cauldron 和 Docmatix 数据集,涵盖文档理解、图像描述等多领域内容,使其具备广泛的应用潜力。目前该模型在 Hugging Face 平台上免费提供,旨在为开发者和研究人员提供强大的多模态处理能力。
多模态原生Mixture-of-Experts模型
Aria-Base-64K是Aria系列的基础模型之一,专为研究目的和继续训练而设计。该模型在长文本预训练阶段后形成,经过33B个token(21B多模态,12B语言,69%为长文本)的训练。它适合于长视频问答数据集或长文档问答数据集的继续预训练或微调,即使在资源有限的情况下,也可以通过短指令调优数据集进行后训练,并转移到长文本问答场景。该模型能够理解多达250张高分辨率图像或多达500张中等分辨率图像,并在语言和多模态场景中保持强大的基础性能。
AI21推出的Jamba 1.6模型,专为企业私有部署设计,具备卓越的长文本处理能力。
Jamba 1.6 是 AI21 推出的最新语言模型,专为企业私有部署而设计。它在长文本处理方面表现出色,能够处理长达 256K 的上下文窗口,采用混合 SSM-Transformer 架构,可高效准确地处理长文本问答任务。该模型在质量上超越了 Mistral、Meta 和 Cohere 等同类模型,同时支持灵活的部署方式,包括在本地或 VPC 中私有部署,确保数据安全。它为企业提供了一种无需在数据安全和模型质量之间妥协的解决方案,适用于需要处理大量数据和长文本的场景,如研发、法律和金融分析等。目前,Jamba 1.6 已在多个企业中得到应用,如 Fnac 使用其进行数据分类,Educa Edtech 利用其构建个性化聊天机器人等。
大型多模态模型,处理多图像、视频和3D数据。
LLaVA-NeXT是一个大型多模态模型,它通过统一的交错数据格式处理多图像、视频、3D和单图像数据,展示了在不同视觉数据模态上的联合训练能力。该模型在多图像基准测试中取得了领先的结果,并在不同场景中通过适当的数据混合提高了之前单独任务的性能或保持了性能。
多模态理解和生成的统一模型
Janus是一个创新的自回归框架,它通过分离视觉编码来实现多模态理解和生成的统一。这种解耦不仅缓解了视觉编码器在理解和生成中的角色冲突,还增强了框架的灵活性。Janus超越了以往的统一模型,并与特定任务的模型性能相匹配或超越。Janus的简单性、高灵活性和有效性使其成为下一代统一多模态模型的强有力候选者。
精准批量处理文本转换工具
Chunker AI擅长将文本分解为块,并使用ChatGPT进行批量处理。它的优势在于可以修复扫描文档中的错误、将简要草稿扩展为详细内容、简化科学语言、提取要点和批量翻译国际语言。产品定位于成为文本处理的未来。
多模态大型语言模型,支持图像和文本理解。
Pixtral-12b-240910是由Mistral AI团队发布的多模态大型语言模型,它能够处理和理解图像以及文本信息。该模型采用了先进的神经网络架构,能够通过图像和文本的结合输入,提供更加丰富和准确的输出结果。它在图像识别、自然语言处理和多模态交互方面展现出卓越的性能,对于需要图像和文本同时处理的应用场景具有重要意义。
国际领先的语言理解与长文本处理大模型。
GLM-4-Plus是智谱推出的一款基座大模型,它在语言理解、指令遵循和长文本处理等方面性能得到全面提升,保持了国际领先水平。该模型的推出,不仅代表了中国在大模型领域的创新和突破,还为开发者和企业提供了强大的语言处理能力,进一步推动了人工智能技术的发展和应用。
高效处理长文本的先进语言模型
Qwen2.5-Turbo是阿里巴巴开发团队推出的一款能够处理超长文本的语言模型,它在Qwen2.5的基础上进行了优化,支持长达1M个token的上下文,相当于约100万英文单词或150万中文字符。该模型在1M-token Passkey Retrieval任务中实现了100%的准确率,并在RULER长文本评估基准测试中得分93.1,超越了GPT-4和GLM4-9B-1M。Qwen2.5-Turbo不仅在长文本处理上表现出色,还保持了短文本处理的高性能,且成本效益高,每1M个token的处理成本仅为0.3元。
多模态图像生成模型
Instruct-Imagen是一个多模态图像生成模型,通过引入多模态指令,实现对异构图像生成任务的处理,并在未知任务中实现泛化。该模型利用自然语言整合不同的模态(如文本、边缘、风格、主题等),标准化丰富的生成意图。通过在预训练文本到图像扩散模型上进行两阶段框架的微调,采用检索增强训练和多样的图像生成任务微调,使得该模型在各种图像生成数据集上的人工评估结果表明,其在领域内与先前的任务特定模型相匹配或超越,并展现出对未知和更复杂任务的有希望的泛化能力。
InternVL3开源:7种尺寸覆盖文、图、视频处理,多模态能力扩展至工业图像分析
InternVL3是由OpenGVLab开源发布的多模态大型语言模型(MLLM),具备卓越的多模态感知和推理能力。该模型系列包含从1B到78B共7个尺寸,能够同时处理文字、图片、视频等多种信息,展现出卓越的整体性能。InternVL3在工业图像分析、3D视觉感知等领域表现出色,其整体文本性能甚至优于Qwen2.5系列。该模型的开源为多模态应用开发提供了强大的支持,有助于推动多模态技术在更多领域的应用。
© 2025 AIbase 备案号:闽ICP备08105208号-14