需求人群:
"Pixtral-12B-2409模型适用于研究人员、开发者和企业,特别是那些需要在图像和文本处理方面实现高级功能的用户。它可以帮助他们开发出能够理解图像内容并生成相关文本的智能应用,如自动图像标注、视觉问答系统等。"
使用场景示例:
使用Pixtral-12B-2409模型为电商平台的图片自动生成描述。
在教育领域,利用模型为学生提供关于科学图像的详细解释。
在艺术领域,通过模型分析艺术作品并生成艺术评论。
产品特色:
原生多模态支持,通过交错图像和文本数据进行训练。
支持可变图像尺寸,适应不同大小的输入。
在多模态任务中具有领先的性能。
在文本基准测试中保持最先进的性能。
序列长度可达128k。
遵循Apache 2.0许可协议。
使用教程:
安装必要的库,如vLLM和mistral_common。
下载并安装Pixtral-12B-2409模型。
使用vLLM库创建一个LLM实例,指定模型名称和采样参数。
准备输入数据,包括文本提示和图像URL。
调用模型的chat方法,传入消息和采样参数。
处理模型输出,获取图像描述或其他多模态任务的结果。
根据需要,将模型部署到服务器或客户端环境中。
浏览量:10
最新流量情况
月访问量
19075.32k
平均访问时长
00:05:32
每次访问页数
5.52
跳出率
45.07%
流量来源
直接访问
48.31%
自然搜索
36.36%
邮件
0.03%
外链引荐
12.17%
社交媒体
3.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.13%
印度
7.59%
日本
3.67%
俄罗斯
6.13%
美国
18.18%
多模态12B参数模型,结合视觉编码器处理图像和文本。
Pixtral-12B-2409是由Mistral AI团队开发的多模态模型,包含12B参数的多模态解码器和400M参数的视觉编码器。该模型在多模态任务中表现出色,支持不同尺寸的图像,并在文本基准测试中保持最前沿的性能。它适用于需要处理图像和文本数据的高级应用,如图像描述生成、视觉问答等。
一个通用的多模态模型,可用于问答、图像描述等任务
HuggingFaceM4/idefics-80b-instruct是一个开源的多模态模型,它可以接受图像和文本的输入,输出相关的文本内容。该模型在视觉问答、图像描述等任务上表现出色,是一个通用的智能助手模型。它由Hugging Face团队开发,基于开放数据集训练,提供免费使用。
面向世界的多模式大型语言模型
Kosmos-2是一个多模态大型语言模型,可以将自然语言与图像、视频等多种形式的输入进行关联。它可以用于短语定位、指代表达理解、指代表达生成、图像描述和视觉问答等任务。Kosmos-2使用了GRIT数据集,该数据集包含了大量的图像-文本对,可以用于模型的训练和评估。Kosmos-2的优势在于它可以将自然语言与视觉信息进行关联,从而提高了模型的表现。
赋予LLM查看和绘图的能力
SEED是一个大规模预训练的模型,通过对交错的文本和视觉数据进行预训练和指导调整,展现了在广泛的多模态理解和生成任务上的出色性能。SEED还具有组合性新兴能力,例如多轮上下文多模态生成,就像您的AI助手一样。SEED还包括SEED Tokenizer v1和SEED Tokenizer v2,它们可以将文本转换为图像。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
视觉语言模型,结合图像和文本信息进行智能处理。
Aquila-VL-2B模型是一个基于LLava-one-vision框架训练的视觉语言模型(VLM),选用Qwen2.5-1.5B-instruct模型作为语言模型(LLM),并使用siglip-so400m-patch14-384作为视觉塔。该模型在自建的Infinity-MM数据集上进行训练,包含约4000万图像-文本对。该数据集结合了从互联网收集的开源数据和使用开源VLM模型生成的合成指令数据。Aquila-VL-2B模型的开源,旨在推动多模态性能的发展,特别是在图像和文本的结合处理方面。
基于Llama-3-8B的多模态大型语言模型,专注于UI任务。
Ferret-UI是首个以用户界面为中心的多模态大型语言模型(MLLM),专为指代表达、定位和推理任务设计。它基于Gemma-2B和Llama-3-8B构建,能够执行复杂的用户界面任务。这个版本遵循了Apple的研究论文,是一个强大的工具,可以用于图像文本到文本的任务,并且在对话和文本生成方面具有优势。
多模态大型语言模型,支持图像和文本处理。
Llama-3.2-11B-Vision 是 Meta 发布的一款多模态大型语言模型(LLMs),它结合了图像和文本处理的能力,旨在提高视觉识别、图像推理、图像描述和回答有关图像的一般问题的性能。该模型在常见的行业基准测试中的表现超过了众多开源和封闭的多模态模型。
首个多模态 Mistral 模型,支持图像和文本的混合任务处理。
Pixtral 12B 是 Mistral AI 团队开发的一款多模态 AI 模型,它能够理解自然图像和文档,具备出色的多模态任务处理能力,同时在文本基准测试中也保持了最先进的性能。该模型支持多种图像尺寸和宽高比,能够在长上下文窗口中处理任意数量的图像,是 Mistral Nemo 12B 的升级版,专为多模态推理而设计,不牺牲关键文本处理能力。
多模态大型语言模型,支持图像和文本理解。
Pixtral-12b-240910是由Mistral AI团队发布的多模态大型语言模型,它能够处理和理解图像以及文本信息。该模型采用了先进的神经网络架构,能够通过图像和文本的结合输入,提供更加丰富和准确的输出结果。它在图像识别、自然语言处理和多模态交互方面展现出卓越的性能,对于需要图像和文本同时处理的应用场景具有重要意义。
统一多模态理解和生成的单一变换器
Show-o是一个用于多模态理解和生成的单一变换器模型,它能够处理图像字幕、视觉问答、文本到图像生成、文本引导的修复和扩展以及混合模态生成。该模型由新加坡国立大学的Show Lab和字节跳动共同开发,采用最新的深度学习技术,能够理解和生成多种模态的数据,是人工智能领域的一大突破。
先进的多模态模型,支持图像和文本理解。
Phi-3.5-vision是微软开发的轻量级、最新一代的多模态模型,基于包括合成数据和经过筛选的公开可用网站在内的数据集构建,专注于文本和视觉的高质量、密集推理数据。该模型属于Phi-3模型家族,经过严格的增强过程,结合了监督微调和直接偏好优化,以确保精确的指令遵循和强大的安全措施。
多模态视觉任务的高效转换模型
LLaVA-OneVision是一款由字节跳动公司与多所大学合作开发的多模态大型模型(LMMs),它在单图像、多图像和视频场景中推动了开放大型多模态模型的性能边界。该模型的设计允许在不同模态/场景之间进行强大的迁移学习,展现出新的综合能力,特别是在视频理解和跨场景能力方面,通过图像到视频的任务转换进行了演示。
玩转热门主流 AI 模型,并接入在你的产品中
X Model 是一个集成热门主流 AI 模型的平台,用户可以在其产品中轻松接入这些模型。它的主要优点包括多样的模型选择、高质量的输出结果以及简单易用的接入流程。X Model 价格灵活,适用于各种规模的业务。
先进的视觉基础模型,支持多种视觉和视觉-语言任务。
Florence-2是由微软开发的高级视觉基础模型,采用基于提示的方法处理广泛的视觉和视觉-语言任务。该模型能够解释简单的文本提示,执行如描述、目标检测和分割等任务。它利用包含54亿个注释的5.4亿张图像的FLD-5B数据集,精通多任务学习。模型的序列到序列架构使其在零样本和微调设置中都表现出色,证明其为有竞争力的视觉基础模型。
大型视频-语言模型,提供视觉问答和视频字幕生成。
VideoLLaMA2-7B是由DAMO-NLP-SG团队开发的多模态大型语言模型,专注于视频内容的理解和生成。该模型在视觉问答和视频字幕生成方面具有显著的性能,能够处理复杂的视频内容,并生成准确、自然的语言描述。它在空间-时间建模和音频理解方面进行了优化,为视频内容的智能分析和处理提供了强大的支持。
Falcon 2 是一款开源、多语言、多模态的模型,具备图像到文本转换能力。
Falcon 2 是一款具有创新功能的生成式 AI 模型,为我们创造了一种充满可能性的未来路径,只有想象力才是限制。Falcon 2 采用开源许可证,具备多语言和多模态的能力,其中独特的图像到文本转换功能标志着 AI 创新的重大进展。
多模态AI模型,图像理解与生成兼备
Mini-Gemini是由香港中文大学终身教授贾佳亚团队开发的多模态模型,具备精准的图像理解能力和高质量的训练数据。该模型结合图像推理和生成,提供不同规模的版本,性能与GPT-4和DALLE3相媲美。Mini-Gemini采用Gemini的视觉双分支信息挖掘方法和SDXL技术,通过卷积网络编码图像并利用Attention机制挖掘信息,同时结合LLM生成文本链接两个模型。
多模态视觉语言模型
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
统一多模态视频生成系统
UniVG是一款统一多模态视频生成系统,能够处理多种视频生成任务,包括文本和图像模态。通过引入多条件交叉注意力和偏置高斯噪声,实现了高自由度和低自由度视频生成。在公共学术基准MSR-VTT上实现了最低的Fr'echet视频距离(FVD),超越了当前开源方法在人类评估上的表现,并与当前闭源方法Gen2不相上下。
高效多模态大型语言模型
TinyGPT-V 是一种高效的多模态大型语言模型,通过使用小型骨干网络来实现。它具有强大的语言理解和生成能力,适用于各种自然语言处理任务。TinyGPT-V 采用 Phi-2 作为预训练模型,具备出色的性能和效率。
一框架,统一所有语言模态
OneLLM是一个旨在统一所有语言模态的框架。它提供了预览模型,并允许本地演示。该框架的功能包括模型安装、模型预览和本地演示。OneLLM的优势在于能够统一不同的模态,如图像和文本,以及语音和文本。该框架的定位是为了简化多模态任务的处理。
小型多模态模型,支持图像和文本生成
Fuyu-8B是由Adept AI训练的多模态文本和图像转换模型。它具有简化的架构和训练过程,易于理解、扩展和部署。它专为数字代理设计,可以支持任意图像分辨率,回答关于图表和图形的问题,回答基于UI的问题,并对屏幕图像进行细粒度定位。它的响应速度很快,可以在100毫秒内处理大型图像。尽管针对我们的用例进行了优化,但它在标准图像理解基准测试中表现良好,如视觉问答和自然图像字幕。请注意,我们发布的模型是一个基础模型,我们希望您根据具体的用例进行微调,例如冗长的字幕或多模态聊天。在我们的经验中,该模型对于少样本学习和各种用例的微调都表现良好。
Assistiv.AI:人工智能辅助平台
Assistiv.AI是一个人工智能辅助平台,致力于为用户提供最优质的AI工具和资源。我们的使命是为您汇聚并开发最好的AI工具,帮助您充分发掘AI的潜力。我们以简单易用的方式,让AI变得普惠易及。平台整合了最先进的自然语言处理、计算机视觉、强化学习等AI技术,可以帮助企业和个人提高工作效率、简化生活。主要产品包括:AI工具箱、AskCodi编码助手、AI智能咨询等,覆盖文本生成、图像处理、交互式聊天、社交媒体营销等多个领域,可广泛应用于生产力、创作、商业、教育等场景。
无需编写代码,构建和销售 AI 驱动的应用
Clevis 是一个无需编写代码即可创建 AI 驱动应用的平台。通过其易于使用的界面和多种预构建的处理步骤,用户可以轻松构建和销售具有文本生成、图像处理和交互式聊天界面等功能的应用。您可以通过连接 Stripe 账户来轻松将应用以基于使用量的定价进行商业化。
Photoshop与SD/SDForge/ComfyUI之间的通信插件
sd-ppp是一个允许用户在Adobe Photoshop和各种Stable Diffusion界面(如SD/SDForge/ComfyUI)之间进行通信的插件。它支持多层操作,包括文本层和图像层,能够处理多个文档和多个Photoshop实例,并允许用户在文档的特定区域工作。该插件对于设计师和艺术家来说是一个强大的工具,因为它可以简化工作流程,提高创作效率,并允许他们利用Stable Diffusion的强大功能来增强他们的设计和艺术作品。
Qwen Turbo 1M Demo是一个由Qwen提供的Hugging Face空间。
Qwen Turbo 1M Demo是一个基于Hugging Face平台的人工智能模型演示。这个模型代表了自然语言处理技术的最新进展,特别是在中文文本理解和生成方面。它的重要性在于能够提供高效、准确的语言模型,以支持各种语言相关的应用,如机器翻译、文本摘要、问答系统等。Qwen Turbo 1M Demo以其较小的模型尺寸和快速的处理速度而受到青睐,适合需要快速部署和高效运行的场合。目前,该模型是免费试用的,具体价格和定位可能需要进一步的商业洽谈。
124B参数的多模态大型语言模型
Pixtral-Large-Instruct-2411是由Mistral AI研发的124B参数的大型多模态模型,基于Mistral Large 2构建,展现出前沿级别的图像理解能力。该模型不仅能够理解文档、图表和自然图像,同时保持了Mistral Large 2在文本理解方面的领先地位。它在MathVista、DocVQA、VQAv2等数据集上达到了最先进的性能,是科研和商业应用的强大工具。
前沿级多模态AI模型,提供图像和文本理解
Pixtral Large是Mistral AI推出的一款前沿级多模态AI模型,基于Mistral Large 2构建,具备领先的图像理解能力,能够理解文档、图表和自然图像,同时保持Mistral Large 2在文本理解方面的领先地位。该模型在多模态基准测试中表现优异,特别是在MathVista、ChartQA和DocVQA等测试中超越了其他模型。Pixtral Large在MM-MT-Bench测试中也展现了竞争力,超越了包括Claude-3.5 Sonnet在内的多个模型。该模型适用于研究和教育用途的Mistral Research License (MRL),以及适用于商业用途的Mistral Commercial License。
© 2024 AIbase 备案号:闽ICP备08105208号-14