浏览量:2368
最新流量情况
月访问量
23904.81k
平均访问时长
00:04:51
每次访问页数
5.82
跳出率
43.33%
流量来源
直接访问
48.28%
自然搜索
35.88%
邮件
0.03%
外链引荐
12.71%
社交媒体
3.06%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
统一多模态视频生成系统
UniVG是一款统一多模态视频生成系统,能够处理多种视频生成任务,包括文本和图像模态。通过引入多条件交叉注意力和偏置高斯噪声,实现了高自由度和低自由度视频生成。在公共学术基准MSR-VTT上实现了最低的Fr'echet视频距离(FVD),超越了当前开源方法在人类评估上的表现,并与当前闭源方法Gen2不相上下。
多模态驱动的定制视频生成架构。
HunyuanCustom 是一个多模态定制视频生成框架,旨在根据用户定义的条件生成特定主题的视频。该技术在身份一致性和多种输入模式的支持上表现出色,能够处理文本、图像、音频和视频输入,适合虚拟人广告、视频编辑等多种应用场景。
多模态图像生成模型
Instruct-Imagen是一个多模态图像生成模型,通过引入多模态指令,实现对异构图像生成任务的处理,并在未知任务中实现泛化。该模型利用自然语言整合不同的模态(如文本、边缘、风格、主题等),标准化丰富的生成意图。通过在预训练文本到图像扩散模型上进行两阶段框架的微调,采用检索增强训练和多样的图像生成任务微调,使得该模型在各种图像生成数据集上的人工评估结果表明,其在领域内与先前的任务特定模型相匹配或超越,并展现出对未知和更复杂任务的有希望的泛化能力。
大型多模态模型,处理多图像、视频和3D数据。
LLaVA-NeXT是一个大型多模态模型,它通过统一的交错数据格式处理多图像、视频、3D和单图像数据,展示了在不同视觉数据模态上的联合训练能力。该模型在多图像基准测试中取得了领先的结果,并在不同场景中通过适当的数据混合提高了之前单独任务的性能或保持了性能。
多模态大型模型,处理文本、图像和视频数据
Valley是由字节跳动开发的尖端多模态大型模型,能够处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,比其他开源模型表现更优。在OpenCompass测试中,与同规模模型相比,平均得分大于等于67.40,在小于10B模型中排名第二。Valley-Eagle版本参考了Eagle,引入了一个可以灵活调整令牌数量并与原始视觉令牌并行的视觉编码器,增强了模型在极端场景下的性能。
创新的AI视频生成器,快速实现创意视频。
Luma AI的Dream Machine是一款AI视频生成器,它利用先进的AI技术,将用户的想法转化为高质量、逼真的视频。它支持从文字描述或图片开始生成视频,具有高度的可扩展性、快速生成能力和实时访问功能。产品界面用户友好,适合专业人士和创意爱好者使用。Luma AI的Dream Machine不断更新,以保持技术领先,为用户提供持续改进的视频生成体验。
多模态大型模型,处理文本、图像和视频数据
Valley-Eagle-7B是由字节跳动开发的多模态大型模型,旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,并在OpenCompass测试中展现出与同规模模型相比的卓越性能。Valley-Eagle-7B结合了LargeMLP和ConvAdapter构建投影器,并引入了VisionEncoder,以增强模型在极端场景下的性能。
Freepik AI 视频生成器,基于人工智能技术快速生成高质量视频内容。
Freepik AI 视频生成器是一款基于人工智能技术的在线工具,能够根据用户输入的初始图像或描述快速生成视频。该技术利用先进的 AI 算法,实现视频内容的自动化生成,极大地提高了视频创作的效率。产品定位为创意设计人员和视频制作者提供快速、高效的视频生成解决方案,帮助用户节省时间和精力。目前该工具处于 Beta 测试阶段,用户可以免费试用其功能。
通过文本生成高质量AI视频
Sora视频生成器是一个可以通过文本生成高质量AI视频的在线网站。用户只需要输入想要生成视频的文本描述,它就可以使用OpenAI的Sora AI模型,转换成逼真的视频。网站还提供了丰富的视频样例,详细的使用指南和定价方案等。
利用AI技术,将文字和图像转化为创意视频。
通义万相AI创意作画是一款利用人工智能技术,将用户的文字描述或图像转化为视频内容的产品。它通过先进的AI算法,能够理解用户的创意意图,自动生成具有艺术感的视频。该产品不仅能够提升内容创作的效率,还能激发用户的创造力,适用于广告、教育、娱乐等多个领域。
InternVL3开源:7种尺寸覆盖文、图、视频处理,多模态能力扩展至工业图像分析
InternVL3是由OpenGVLab开源发布的多模态大型语言模型(MLLM),具备卓越的多模态感知和推理能力。该模型系列包含从1B到78B共7个尺寸,能够同时处理文字、图片、视频等多种信息,展现出卓越的整体性能。InternVL3在工业图像分析、3D视觉感知等领域表现出色,其整体文本性能甚至优于Qwen2.5系列。该模型的开源为多模态应用开发提供了强大的支持,有助于推动多模态技术在更多领域的应用。
基于 AI 技术生成视频内容的智能服务。
清影 AI 视频生成服务是一个创新的人工智能平台,旨在通过智能算法生成高质量的视频内容。该服务适合各种行业用户,能够快速便捷地生成富有创意的视觉内容。无论是商业广告、教育课程还是娱乐视频,清影 AI 都能提供优质的解决方案。该产品依托于先进的 GLM 大模型,确保生成内容的准确性与丰富性,同时满足用户个性化需求。提供免费试用,鼓励用户探索 AI 视频创作的无限可能。
多模态AI模型,图像理解与生成兼备
Mini-Gemini是由香港中文大学终身教授贾佳亚团队开发的多模态模型,具备精准的图像理解能力和高质量的训练数据。该模型结合图像推理和生成,提供不同规模的版本,性能与GPT-4和DALLE3相媲美。Mini-Gemini采用Gemini的视觉双分支信息挖掘方法和SDXL技术,通过卷积网络编码图像并利用Attention机制挖掘信息,同时结合LLM生成文本链接两个模型。
多模态文本到图像生成模型
EMMA是一个基于最前沿的文本到图像扩散模型ELLA构建的新型图像生成模型,能够接受多模态提示,通过创新的多模态特征连接器设计,有效整合文本和补充模态信息。该模型通过冻结原始T2I扩散模型的所有参数,并仅调整一些额外层,揭示了预训练的T2I扩散模型可以秘密接受多模态提示的有趣特性。EMMA易于适应不同的现有框架,是生成个性化和上下文感知图像甚至视频的灵活有效工具。
多模态大型语言模型,支持图像和文本处理。
Llama-3.2-11B-Vision 是 Meta 发布的一款多模态大型语言模型(LLMs),它结合了图像和文本处理的能力,旨在提高视觉识别、图像推理、图像描述和回答有关图像的一般问题的性能。该模型在常见的行业基准测试中的表现超过了众多开源和封闭的多模态模型。
利用AI技术快速生成视频内容
AI视频生成神器是一款利用人工智能技术,将图片或文字转换成视频内容的在线工具。它通过深度学习算法,能够理解图片和文字的含义,自动生成具有吸引力的视频内容。这种技术的应用,极大地降低了视频制作的成本和门槛,使得普通用户也能轻松制作出专业级别的视频。产品背景信息显示,随着社交媒体和视频平台的兴起,用户对视频内容的需求日益增长,而传统的视频制作方式成本高、耗时长,难以满足快速变化的市场需求。AI视频生成神器的出现,正好填补了这一市场空白,为用户提供了一种快速、低成本的视频制作解决方案。目前,该产品提供免费试用,具体价格需要在网站上查询。
使用简单的提示和图像生成视频片段。
Adobe Firefly 是一款基于人工智能技术的视频生成工具。它能够根据用户提供的简单提示或图像快速生成高质量的视频片段。该技术利用先进的 AI 算法,通过对大量视频数据的学习和分析,实现自动化的视频创作。其主要优点包括操作简单、生成速度快、视频质量高。Adobe Firefly 面向创意工作者、视频制作者以及需要快速生成视频内容的用户,提供高效、便捷的视频创作解决方案。目前该产品处于 Beta 测试阶段,用户可以免费使用,未来可能会根据市场需求和产品发展进行定价和定位。
下一代多模态智能模型
Emu3是一套最新的多模态模型,仅通过下一个token预测进行训练,能够处理图像、文本和视频。它在生成和感知任务上超越了多个特定任务的旗舰模型,并且不需要扩散或组合架构。Emu3通过将多模态序列统一到一个单一的transformer模型中,简化了复杂的多模态模型设计,展示了在训练和推理过程中扩展的巨大潜力。
小型多模态模型,支持图像和文本生成
Fuyu-8B是由Adept AI训练的多模态文本和图像转换模型。它具有简化的架构和训练过程,易于理解、扩展和部署。它专为数字代理设计,可以支持任意图像分辨率,回答关于图表和图形的问题,回答基于UI的问题,并对屏幕图像进行细粒度定位。它的响应速度很快,可以在100毫秒内处理大型图像。尽管针对我们的用例进行了优化,但它在标准图像理解基准测试中表现良好,如视觉问答和自然图像字幕。请注意,我们发布的模型是一个基础模型,我们希望您根据具体的用例进行微调,例如冗长的字幕或多模态聊天。在我们的经验中,该模型对于少样本学习和各种用例的微调都表现良好。
多模态12B参数模型,结合视觉编码器处理图像和文本。
Pixtral-12B-2409是由Mistral AI团队开发的多模态模型,包含12B参数的多模态解码器和400M参数的视觉编码器。该模型在多模态任务中表现出色,支持不同尺寸的图像,并在文本基准测试中保持最前沿的性能。它适用于需要处理图像和文本数据的高级应用,如图像描述生成、视觉问答等。
首个多模态 Mistral 模型,支持图像和文本的混合任务处理。
Pixtral 12B 是 Mistral AI 团队开发的一款多模态 AI 模型,它能够理解自然图像和文档,具备出色的多模态任务处理能力,同时在文本基准测试中也保持了最先进的性能。该模型支持多种图像尺寸和宽高比,能够在长上下文窗口中处理任意数量的图像,是 Mistral Nemo 12B 的升级版,专为多模态推理而设计,不牺牲关键文本处理能力。
一款多模态人工智能系统,可以根据文字、图片或视频剪辑生成新颖的视频。
Gen-2是一款多模态人工智能系统,可以根据文字、图片或视频剪辑生成新颖的视频。它可以通过将图像或文字提示的构图和风格应用于源视频的结构(Video to Video),或者仅使用文字(Text to Video)来实现。就像拍摄了全新的内容,而实际上并没有拍摄任何东西。Gen-2提供了多种模式,可以将任何图像、视频剪辑或文字提示转化为引人注目的影片作品。
高性能多模态语言模型,适用于图像和视频理解。
MiniCPM-V 2.6是一个基于8亿参数的多模态大型语言模型,它在单图像理解、多图像理解和视频理解等多个领域展现出领先性能。该模型在OpenCompass等多个流行基准测试中取得了平均65.2分的高分,超越了广泛使用的专有模型。它还具备强大的OCR能力,支持多语言,并在效率上表现出色,能够在iPad等终端设备上实现实时视频理解。
视频生成的前沿模型
WorldDreamer是一个创新的视频生成模型,它通过预测遮蔽的视觉令牌来理解并模拟世界动态。它在图像到视频合成、文本到视频生成、视频修复、视频风格化以及动作到视频生成等多个方面表现出色。该模型借鉴了大型语言模型的成功经验,将世界建模视为一个无监督的视觉序列建模挑战,通过将视觉输入映射到离散的令牌并预测被遮蔽的令牌来实现。
多模态自回归模型,擅长文本生成图像
Lumina-mGPT是一个多模态自回归模型家族,能够执行各种视觉和语言任务,特别是在从文本描述生成灵活的逼真图像方面表现突出。该模型基于xllmx模块实现,支持以LLM为中心的多模态任务,适用于深度探索和快速熟悉模型能力。
SmolVLM-256M 是世界上最小的多模态模型,可高效处理图像和文本输入并生成文本输出。
SmolVLM-256M 是由 Hugging Face 开发的多模态模型,基于 Idefics3 架构,专为高效处理图像和文本输入而设计。它能够回答关于图像的问题、描述视觉内容或转录文本,且仅需不到 1GB 的 GPU 内存即可运行推理。该模型在多模态任务上表现出色,同时保持轻量化架构,适合在设备端应用。其训练数据来自 The Cauldron 和 Docmatix 数据集,涵盖文档理解、图像描述等多领域内容,使其具备广泛的应用潜力。目前该模型在 Hugging Face 平台上免费提供,旨在为开发者和研究人员提供强大的多模态处理能力。
VideoLLaMA3是前沿的多模态基础模型,专注于图像和视频理解。
VideoLLaMA3是由DAMO-NLP-SG团队开发的前沿多模态基础模型,专注于图像和视频理解。该模型基于Qwen2.5架构,结合了先进的视觉编码器(如SigLip)和强大的语言生成能力,能够处理复杂的视觉和语言任务。其主要优点包括高效的时空建模能力、强大的多模态融合能力以及对大规模数据的优化训练。该模型适用于需要深度视频理解的应用场景,如视频内容分析、视觉问答等,具有广泛的研究和商业应用潜力。
基于文本描述实现多尺度连续缩放视频生成。
Generative Powers of Ten是一种利用文本到图像模型生成多尺度一致内容的方法,能够实现对场景的极端语义缩放,例如从森林的广角景观视图到树枝上昆虫的微距拍摄。这种表示方式使我们能够渲染连续缩放视频,或者交互式地探索场景的不同尺度。我们通过一种联合多尺度扩散采样方法实现这一点,该方法鼓励在不同尺度之间保持一致性,同时保留每个单独采样过程的完整性。由于每个生成的尺度都由不同的文本提示指导,我们的方法能够实现比传统的超分辨率方法更深层次的缩放,后者可能难以在完全不同的尺度上创建新的上下文结构。我们在图像超分辨率和外部绘制的替代技术上对我们的方法进行了定性比较,并表明我们的方法在生成一致的多尺度内容方面最为有效。
© 2025 AIbase 备案号:闽ICP备08105208号-14