需求人群:
"该模型适用于研究人员、开发者以及需要进行视频内容分析、视觉问答和多模态应用的企业。其强大的多模态理解能力能够帮助用户快速处理复杂的视觉和语言任务,提升工作效率和用户体验。"
使用场景示例:
在视频内容分析中,用户可以上传视频并获取详细的自然语言描述,帮助快速理解视频内容。
用于视觉问答任务,用户可以输入问题并结合视频或图像获取准确的答案。
在多模态应用中,结合视频和文本数据进行内容生成或分类任务,提升模型的性能和准确性。
产品特色:
支持视频和图像的多模态输入,能够生成自然语言描述。
提供多种预训练模型,包括2B和7B参数规模的版本。
优化的时空建模能力,能够处理长视频序列。
支持多语言生成,适用于跨语言视频理解任务。
提供完整的推理代码和在线演示,方便用户快速上手。
支持本地部署和云端推理,适应不同使用场景。
提供详细的性能评估和基准测试结果,便于用户选择合适的模型版本。
使用教程:
1. 安装必要的依赖库,如PyTorch、transformers等。
2. 克隆VideoLLaMA3的GitHub仓库并安装项目依赖。
3. 下载预训练模型权重,选择合适的模型版本(如2B或7B)。
4. 使用提供的推理代码或在线演示进行测试,输入视频或图像数据。
5. 根据需要调整模型参数或进行微调,以适应特定的应用场景。
6. 部署模型到本地或云端,进行实际应用。
浏览量:37
最新流量情况
月访问量
4.75m
平均访问时长
00:06:34
每次访问页数
6.10
跳出率
36.20%
流量来源
直接访问
52.19%
自然搜索
32.64%
邮件
0.04%
外链引荐
12.93%
社交媒体
2.02%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.32%
德国
3.68%
印度
9.04%
俄罗斯
3.92%
美国
19.25%
VideoLLaMA3是前沿的多模态基础模型,专注于图像和视频理解。
VideoLLaMA3是由DAMO-NLP-SG团队开发的前沿多模态基础模型,专注于图像和视频理解。该模型基于Qwen2.5架构,结合了先进的视觉编码器(如SigLip)和强大的语言生成能力,能够处理复杂的视觉和语言任务。其主要优点包括高效的时空建模能力、强大的多模态融合能力以及对大规模数据的优化训练。该模型适用于需要深度视频理解的应用场景,如视频内容分析、视觉问答等,具有广泛的研究和商业应用潜力。
最先进的视觉语言模型,支持多模态理解和文本生成。
Qwen2-VL-2B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最先进的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,为基于视频的问题回答、对话、内容创作等提供高质量的支持。Qwen2-VL还支持多语言,除了英语和中文,还包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。
VideoRAG 是一个用于处理极长上下文视频的检索增强型生成框架。
VideoRAG 是一种创新的检索增强型生成框架,专门用于理解和处理极长上下文视频。它通过结合图驱动的文本知识锚定和层次化多模态上下文编码,实现了对无限制长度视频的理解。该框架能够动态构建知识图谱,保持多视频上下文的语义连贯性,并通过自适应多模态融合机制优化检索效率。VideoRAG 的主要优点包括高效的极长上下文视频处理能力、结构化的视频知识索引以及多模态检索能力,使其能够为复杂查询提供全面的回答。该框架在长视频理解领域具有重要的技术价值和应用前景。
Qwen2.5-VL 是一款强大的视觉语言模型,能够理解图像和视频内容并生成相应文本。
Qwen2.5-VL 是 Qwen 团队推出的最新旗舰视觉语言模型,是视觉语言模型领域的重要进步。它不仅能够识别常见物体,还能分析图像中的文字、图表、图标等复杂内容,并支持对长视频的理解和事件定位。该模型在多个基准测试中表现出色,尤其在文档理解和视觉代理任务中具有显著优势,展现了强大的视觉理解和推理能力。其主要优点包括高效的多模态理解、强大的长视频处理能力以及灵活的工具调用能力,适用于多种应用场景。
一个用于智能设备等的多模态原生代理框架。
OmAgent是一个多模态原生代理框架,用于智能设备等。它采用分治算法高效解决复杂任务,能预处理长视频并以类似人类的精度进行问答,还能基于用户请求和可选天气条件提供个性化服装建议等。目前官网未明确显示价格,但从功能来看,主要面向需要高效任务处理和智能交互的用户群体,如开发者、企业等。
Qwen2-VL-7B是最新的视觉语言模型,支持多模态理解和文本生成。
Qwen2-VL-7B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最先进的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,为基于视频的问题回答、对话、内容创作等提供高质量的支持。此外,Qwen2-VL还支持多语言,除了英语和中文,还包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。
124B参数的多模态大型语言模型
Pixtral-Large-Instruct-2411是由Mistral AI研发的124B参数的大型多模态模型,基于Mistral Large 2构建,展现出前沿级别的图像理解能力。该模型不仅能够理解文档、图表和自然图像,同时保持了Mistral Large 2在文本理解方面的领先地位。它在MathVista、DocVQA、VQAv2等数据集上达到了最先进的性能,是科研和商业应用的强大工具。
前沿级多模态AI模型,提供图像和文本理解
Pixtral Large是Mistral AI推出的一款前沿级多模态AI模型,基于Mistral Large 2构建,具备领先的图像理解能力,能够理解文档、图表和自然图像,同时保持Mistral Large 2在文本理解方面的领先地位。该模型在多模态基准测试中表现优异,特别是在MathVista、ChartQA和DocVQA等测试中超越了其他模型。Pixtral Large在MM-MT-Bench测试中也展现了竞争力,超越了包括Claude-3.5 Sonnet在内的多个模型。该模型适用于研究和教育用途的Mistral Research License (MRL),以及适用于商业用途的Mistral Commercial License。
多模态大型语言模型的优化与分析
MM1.5是一系列多模态大型语言模型(MLLMs),旨在增强文本丰富的图像理解、视觉指代表明和接地以及多图像推理的能力。该模型基于MM1架构,采用以数据为中心的模型训练方法,系统地探索了整个模型训练生命周期中不同数据混合的影响。MM1.5模型从1B到30B参数不等,包括密集型和混合专家(MoE)变体,并通过广泛的实证研究和消融研究,提供了详细的训练过程和决策见解,为未来MLLM开发研究提供了宝贵的指导。
多模态原生混合专家模型
Aria是一个多模态原生混合专家模型,具有强大的多模态、语言和编码任务性能。它在视频和文档理解方面表现出色,支持长达64K的多模态输入,能够在10秒内描述一个256帧的视频。Aria模型的参数量为25.3B,能够在单个A100(80GB)GPU上使用bfloat16精度进行加载。Aria的开发背景是满足对多模态数据理解的需求,特别是在视频和文档处理方面。它是一个开源模型,旨在推动多模态人工智能的发展。
多模态大型语言模型,理解长图像序列。
mPLUG-Owl3是一个多模态大型语言模型,专注于长图像序列的理解。它能够从检索系统中学习知识,与用户进行图文交替对话,并观看长视频,记住其细节。模型的源代码和权重已在HuggingFace上发布,适用于视觉问答、多模态基准测试和视频基准测试等场景。
先进的多模态模型,支持图像和文本理解。
Phi-3.5-vision是微软开发的轻量级、最新一代的多模态模型,基于包括合成数据和经过筛选的公开可用网站在内的数据集构建,专注于文本和视觉的高质量、密集推理数据。该模型属于Phi-3模型家族,经过严格的增强过程,结合了监督微调和直接偏好优化,以确保精确的指令遵循和强大的安全措施。
高性能多模态语言模型,适用于图像和视频理解。
MiniCPM-V 2.6是一个基于8亿参数的多模态大型语言模型,它在单图像理解、多图像理解和视频理解等多个领域展现出领先性能。该模型在OpenCompass等多个流行基准测试中取得了平均65.2分的高分,超越了广泛使用的专有模型。它还具备强大的OCR能力,支持多语言,并在效率上表现出色,能够在iPad等终端设备上实现实时视频理解。
一款多功能大型视觉语言模型
InternLM-XComposer-2.5是一款支持长上下文输入和输出的多功能大型视觉语言模型。它在各种文本图像理解和创作应用中表现出色,实现了与GPT-4V相当的水平,但仅使用了7B的LLM后端。该模型通过24K交错图像文本上下文进行训练,能够无缝扩展到96K长上下文,通过RoPE外推。这种长上下文能力使其在需要广泛输入和输出上下文的任务中表现突出。此外,它还支持超高分辨率理解、细粒度视频理解、多轮多图像对话、网页制作以及撰写高质量图文文章等功能。
大型视频-语言模型,提供视觉问答和视频字幕生成。
VideoLLaMA2-7B是由DAMO-NLP-SG团队开发的多模态大型语言模型,专注于视频内容的理解和生成。该模型在视觉问答和视频字幕生成方面具有显著的性能,能够处理复杂的视频内容,并生成准确、自然的语言描述。它在空间-时间建模和音频理解方面进行了优化,为视频内容的智能分析和处理提供了强大的支持。
第二代多模态预训练对话模型
CogVLM2是由清华大学团队开发的第二代多模态预训练对话模型,它在多个基准测试中取得了显著的改进,支持8K内容长度和1344*1344的图像分辨率。CogVLM2系列模型提供了支持中文和英文的开源版本,能够与一些非开源模型相媲美的性能。
连接数字和物理世界的首款多模态模型
Grok-1.5V是X.AI公司推出的第一代多模态模型。除了强大的文本处理能力外,Grok还可以处理各种视觉信息,包括文档、图表、截图和照片等。该模型在多学科推理、文档理解、科学图表理解、图表解读和现实世界理解等方面表现出色,并将于近期向早期测试用户和现有Grok用户推出。
面向长期视频理解的大规模多模态模型
MA-LMM是一种基于大语言模型的大规模多模态模型,主要针对长期视频理解进行设计。它采用在线处理视频的方式,并使用记忆库存储过去的视频信息,从而可以在不超过语言模型上下文长度限制或GPU内存限制的情况下,参考历史视频内容进行长期分析。MA-LMM可以无缝集成到当前的多模态语言模型中,并在长视频理解、视频问答和视频字幕等任务上取得了领先的性能。
支持同时理解和生成图像的多模态大型语言模型
Mini-Gemini是一个多模态视觉语言模型,支持从2B到34B的系列密集和MoE大型语言模型,同时具备图像理解、推理和生成能力。它基于LLaVA构建,利用双视觉编码器提供低分辨率视觉嵌入和高分辨率候选区域,采用补丁信息挖掘在高分辨率区域和低分辨率视觉查询之间进行补丁级挖掘,将文本与图像融合用于理解和生成任务。支持包括COCO、GQA、OCR-VQA、VisualGenome等多个视觉理解基准测试。
增强文本与视觉任务处理能力的开源模型。
Mistral-Small-3.1-24B-Base-2503 是一款具有 240 亿参数的先进开源模型,支持多语言和长上下文处理,适用于文本与视觉任务。它是 Mistral Small 3.1 的基础模型,具有较强的多模态能力,适合企业需求。
Mistral OCR 是一款强大的文档理解 OCR 产品,能够以极高的准确性从 PDF 和图像中提取文本、图像、表格和方程式。
Mistral OCR 是由 Mistral AI 开发的先进光学字符识别 API,旨在以无与伦比的准确性提取和结构化文档内容。它能够处理包含文本、图像、表格和方程式的复杂文档,输出 Markdown 格式的结果,便于与 AI 系统和检索增强生成(RAG)系统集成。其高精度、高速度和多模态处理能力使其在大规模文档处理场景中表现出色,尤其适用于科研、法律、客服和历史文献保护等领域。Mistral OCR 的定价为每美元 1000 页标准使用量,批量处理可达每美元 2000 页,还提供企业自托管选项,满足特定隐私需求。
基于Gemini 2.0的机器人模型,将AI带入物理世界,具备视觉、语言和动作能力。
Gemini Robotics是Google DeepMind推出的一种先进的人工智能模型,专为机器人应用而设计。它基于Gemini 2.0架构,通过视觉、语言和动作(VLA)的融合,使机器人能够执行复杂的现实世界任务。该技术的重要性在于它推动了机器人从实验室走向日常生活和工业应用的进程,为未来智能机器人的发展奠定了基础。Gemini Robotics的主要优点包括强大的泛化能力、交互性和灵巧性,使其能够适应不同的任务和环境。目前,该技术处于研究和开发阶段,尚未明确具体的价格和市场定位。
R1-Omni 是一个结合强化学习的全模态情绪识别模型,专注于提升多模态情绪识别的可解释性。
R1-Omni 是一个创新的多模态情绪识别模型,通过强化学习提升模型的推理能力和泛化能力。该模型基于 HumanOmni-0.5B 开发,专注于情绪识别任务,能够通过视觉和音频模态信息进行情绪分析。其主要优点包括强大的推理能力、显著提升的情绪识别性能以及在分布外数据上的出色表现。该模型适用于需要多模态理解的场景,如情感分析、智能客服等领域,具有重要的研究和应用价值。
智元发布首个通用具身基座大模型GO-1,开创性提出ViLLA架构,推动具身智能发展。
智元通用具身基座大模型GO-1是智元推出的一款革命性的人工智能模型。该模型基于创新的Vision-Language-Latent-Action(ViLLA)架构,通过多模态大模型(VLM)和混合专家(MoE)系统,实现了从视觉和语言输入到机器人动作执行的高效转换。GO-1能够利用人类视频和真实机器人数据进行学习,具备强大的泛化能力,能够在极少数据甚至零样本下快速适应新任务和环境。其主要优点包括高效的学习能力、强大的泛化性能以及对多种机器人本体的适配性。该模型的推出标志着具身智能向通用化、开放化和智能化方向迈出了重要一步,有望在商业、工业和家庭等多个领域发挥重要作用。
OpenAI Agents SDK 是一个用于构建自主智能体的开发工具包,简化多智能体工作流的编排。
OpenAI Agents SDK 是一个用于构建自主智能体的开发工具包。它基于 OpenAI 的先进模型能力,如高级推理、多模态交互和新的安全技术,为开发者提供了一种简化的方式来构建、部署和扩展可靠的智能体应用。该工具包不仅支持单智能体和多智能体工作流的编排,还集成了可观测性工具,帮助开发者追踪和优化智能体的执行流程。其主要优点包括易于配置的 LLM 模型、智能的智能体交接机制、可配置的安全检查以及强大的调试和性能优化功能。该工具包适用于需要自动化复杂任务的企业和开发者,旨在通过智能体技术提升生产力和效率。
SmolVLM2 是一个专注于视频内容分析和生成的轻量化语言模型。
SmolVLM2 是一种轻量级的视频语言模型,旨在通过分析视频内容生成相关的文本描述或视频亮点。该模型具有高效性、低资源消耗的特点,适合在多种设备上运行,包括移动设备和桌面客户端。其主要优点是能够快速处理视频数据并生成高质量的文本输出,为视频内容创作、视频分析和教育等领域提供了强大的技术支持。该模型由 Hugging Face 团队开发,定位为高效、轻量化的视频处理工具,目前处于实验阶段,用户可以免费试用。
Inception Labs 推出新一代扩散式大语言模型,提供极速、高效和高质量的语言生成能力。
Inception Labs 是一家专注于开发扩散式大语言模型(dLLMs)的公司。其技术灵感来源于先进的图像和视频生成系统,如 Midjourney 和 Sora。通过扩散模型,Inception Labs 提供了比传统自回归模型快 5-10 倍的速度、更高的效率和更强的生成控制能力。其模型支持并行文本生成,能够纠正错误和幻觉,适合多模态任务,并且在推理和结构化数据生成方面表现出色。公司由斯坦福、UCLA 和康奈尔大学的研究人员和工程师组成,是扩散模型领域的先驱。
Aya Vision 是 Cohere 推出的多语言多模态视觉模型,旨在提升多语言场景下的视觉和文本理解能力。
Aya Vision 是 Cohere For AI 团队开发的先进视觉模型,专注于多语言多模态任务,支持 23 种语言。该模型通过创新的算法突破,如合成标注、多语言数据扩展和多模态模型融合,显著提升了视觉和文本任务的性能。其主要优点包括高效性(在计算资源有限的情况下仍能表现出色)和广泛的多语言支持。Aya Vision 的发布旨在推动多语言多模态研究的前沿发展,并为全球研究社区提供技术支持。
© 2025 AIbase 备案号:闽ICP备08105208号-14