需求人群:
"Qwen2-VL-7B的目标受众包括研究人员、开发者和企业用户,特别是那些需要进行视觉语言理解和文本生成的领域。该模型可以应用于自动内容创作、视频分析、多语言文本理解等多个场景,帮助用户提高效率和准确性。"
使用场景示例:
案例一:使用Qwen2-VL-7B进行视频内容的自动摘要和问题回答。
案例二:集成Qwen2-VL-7B到移动应用中,实现基于图像的搜索和推荐。
案例三:利用Qwen2-VL-7B进行多语言文档的视觉问答和内容分析。
产品特色:
- 支持各种分辨率和比例的图像理解:Qwen2-VL在视觉理解基准测试中取得了最先进的性能。
- 理解超过20分钟的视频:Qwen2-VL能够理解长视频,支持高质量的视频问题回答和对话。
- 集成到移动设备和机器人等设备中:Qwen2-VL具备复杂推理和决策能力,可以集成到移动设备和机器人中,实现基于视觉环境和文本指令的自动操作。
- 多语言支持:Qwen2-VL支持多种语言的文本理解,包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。
- 任意图像分辨率处理:Qwen2-VL可以处理任意图像分辨率,提供更接近人类视觉处理的体验。
- 多模态旋转位置嵌入(M-ROPE):Qwen2-VL通过分解位置嵌入来捕获1D文本、2D视觉和3D视频位置信息,增强其多模态处理能力。
使用教程:
1. 安装最新版本的Hugging Face transformers库,使用命令`pip install -U transformers`。
2. 访问Qwen2-VL-7B的Hugging Face页面,了解模型的详细信息和使用指南。
3. 根据具体需求,选择合适的预训练模型进行下载和部署。
4. 使用Hugging Face提供的工具和接口,将Qwen2-VL-7B集成到自己的项目中。
5. 根据模型的API文档,编写代码以实现图像和文本的输入处理。
6. 运行模型,获取输出结果,并根据需要进行后处理。
7. 根据模型的输出,进行进一步的分析或应用开发。
浏览量:4
最新流量情况
月访问量
20899.84k
平均访问时长
00:04:57
每次访问页数
5.24
跳出率
46.04%
流量来源
直接访问
48.28%
自然搜索
36.58%
邮件
0.03%
外链引荐
12.01%
社交媒体
3.07%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.07%
印度
7.93%
日本
3.42%
俄罗斯
5.95%
美国
18.10%
Qwen2-VL-7B是最新的视觉语言模型,支持多模态理解和文本生成。
Qwen2-VL-7B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最先进的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,为基于视频的问题回答、对话、内容创作等提供高质量的支持。此外,Qwen2-VL还支持多语言,除了英语和中文,还包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。
最先进的视觉语言模型,支持多模态理解和文本生成。
Qwen2-VL-2B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最先进的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,为基于视频的问题回答、对话、内容创作等提供高质量的支持。Qwen2-VL还支持多语言,除了英语和中文,还包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。
视觉语言模型,结合图像和文本信息进行智能处理。
Aquila-VL-2B模型是一个基于LLava-one-vision框架训练的视觉语言模型(VLM),选用Qwen2.5-1.5B-instruct模型作为语言模型(LLM),并使用siglip-so400m-patch14-384作为视觉塔。该模型在自建的Infinity-MM数据集上进行训练,包含约4000万图像-文本对。该数据集结合了从互联网收集的开源数据和使用开源VLM模型生成的合成指令数据。Aquila-VL-2B模型的开源,旨在推动多模态性能的发展,特别是在图像和文本的结合处理方面。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
基于Llama-3-8B的多模态大型语言模型,专注于UI任务。
Ferret-UI是首个以用户界面为中心的多模态大型语言模型(MLLM),专为指代表达、定位和推理任务设计。它基于Gemma-2B和Llama-3-8B构建,能够执行复杂的用户界面任务。这个版本遵循了Apple的研究论文,是一个强大的工具,可以用于图像文本到文本的任务,并且在对话和文本生成方面具有优势。
多模态原生混合专家模型
Aria是一个多模态原生混合专家模型,具有强大的多模态、语言和编码任务性能。它在视频和文档理解方面表现出色,支持长达64K的多模态输入,能够在10秒内描述一个256帧的视频。Aria模型的参数量为25.3B,能够在单个A100(80GB)GPU上使用bfloat16精度进行加载。Aria的开发背景是满足对多模态数据理解的需求,特别是在视频和文档处理方面。它是一个开源模型,旨在推动多模态人工智能的发展。
训练和部署嵌入式模型的AI平台
Marqo是一个专注于训练和部署嵌入式模型的平台,它提供了一个端到端的解决方案,从模型训练到推理,再到存储。Marqo支持150多种嵌入式模型,并且可以快速原型设计,加速迭代,并无缝部署。该平台支持多模态模型,如CLIP,可以从图像和其他数据类型中提取语义信息,实现文本和图像的无缝搜索,甚至可以将文本和图像组合成一个向量。Marqo还支持100多种语言的搜索,提供最先进的多语言模型,无需手动进行语言配置即可扩展到新的地区。此外,Marqo的可扩展性允许用户在笔记本电脑上的Docker镜像中运行,也可以扩展到云端数十个GPU推理节点,提供低延迟的搜索服务。
AI驱动的写作助手,快速生成各类文本内容。
Daily AI Writer是一个AI驱动的写作助手,它利用先进的人工智能技术帮助用户快速生成电子邮件、社交媒体帖子和文档。该产品提供AI辅助写作、智能回复助手、AI写作教练等功能,支持多语言,帮助用户提升写作技能,调整语气和风格以适应不同的读者群体。它适用于专业人士、学生、社交媒体爱好者、内容创作者和非母语人士,旨在提高写作效率和质量。
多模态12B参数模型,结合视觉编码器处理图像和文本。
Pixtral-12B-2409是由Mistral AI团队开发的多模态模型,包含12B参数的多模态解码器和400M参数的视觉编码器。该模型在多模态任务中表现出色,支持不同尺寸的图像,并在文本基准测试中保持最前沿的性能。它适用于需要处理图像和文本数据的高级应用,如图像描述生成、视觉问答等。
新一代视觉语言模型,更清晰地看世界。
Qwen2-VL是一款基于Qwen2打造的最新一代视觉语言模型,具备多语言支持和强大的视觉理解能力,能够处理不同分辨率和长宽比的图片,理解长视频,并可集成到手机、机器人等设备中进行自动操作。它在多个视觉理解基准测试中取得全球领先的表现,尤其在文档理解方面有明显优势。
先进的混合SSM-Transformer指令遵循基础模型
AI21 Jamba 1.5系列模型是市场上最强大的长上下文模型之一,提供比同类领先模型快2.5倍的推理速度。这些模型展示了卓越的长上下文处理能力、速度和质量,是首次成功将非Transformer模型扩展到市场领先模型的质量和强度。
高效能的长文本处理AI模型
AI21-Jamba-1.5-Mini是AI21实验室开发的最新一代混合SSM-Transformer指令跟随基础模型。这款模型以其卓越的长文本处理能力、速度和质量在市场上脱颖而出,相较于同类大小的领先模型,推理速度提升高达2.5倍。Jamba 1.5 Mini和Jamba 1.5 Large专为商业用例和功能进行了优化,如函数调用、结构化输出(JSON)和基础生成。
先进的多模态模型,支持图像和文本理解。
Phi-3.5-vision是微软开发的轻量级、最新一代的多模态模型,基于包括合成数据和经过筛选的公开可用网站在内的数据集构建,专注于文本和视觉的高质量、密集推理数据。该模型属于Phi-3模型家族,经过严格的增强过程,结合了监督微调和直接偏好优化,以确保精确的指令遵循和强大的安全措施。
高性能多模态语言模型,适用于图像和视频理解。
MiniCPM-V 2.6是一个基于8亿参数的多模态大型语言模型,它在单图像理解、多图像理解和视频理解等多个领域展现出领先性能。该模型在OpenCompass等多个流行基准测试中取得了平均65.2分的高分,超越了广泛使用的专有模型。它还具备强大的OCR能力,支持多语言,并在效率上表现出色,能够在iPad等终端设备上实现实时视频理解。
12B参数的大型语言模型
Mistral-Nemo-Base-2407是由Mistral AI和NVIDIA联合训练的12B参数大型预训练生成文本模型。该模型在多语言和代码数据上进行了训练,显著优于相同或更小规模的现有模型。其主要特点包括:Apache 2.0许可证发布,支持预训练和指令版本,128k上下文窗口训练,支持多种语言和代码数据,是Mistral 7B的替代品。模型架构包括40层、5120维、128头维、14364隐藏维、32头数、8个kv头(GQA)、词汇量约128k、旋转嵌入(theta=1M)。该模型在多个基准测试中表现出色,如HellaSwag、Winogrande、OpenBookQA等。
一款多功能大型视觉语言模型
InternLM-XComposer-2.5是一款支持长上下文输入和输出的多功能大型视觉语言模型。它在各种文本图像理解和创作应用中表现出色,实现了与GPT-4V相当的水平,但仅使用了7B的LLM后端。该模型通过24K交错图像文本上下文进行训练,能够无缝扩展到96K长上下文,通过RoPE外推。这种长上下文能力使其在需要广泛输入和输出上下文的任务中表现突出。此外,它还支持超高分辨率理解、细粒度视频理解、多轮多图像对话、网页制作以及撰写高质量图文文章等功能。
生成高质量图像描述的AI模型
HunyuanCaptioner是一款基于LLaVA实现的文本到图像技术模型,能够生成与图像高度一致的文本描述,包括物体描述、物体关系、背景信息、图像风格等。它支持中文和英文的单图和多图推理,并可通过Gradio进行本地演示。
大型视频-语言模型,提供视觉问答和视频字幕生成。
VideoLLaMA2-7B是由DAMO-NLP-SG团队开发的多模态大型语言模型,专注于视频内容的理解和生成。该模型在视觉问答和视频字幕生成方面具有显著的性能,能够处理复杂的视频内容,并生成准确、自然的语言描述。它在空间-时间建模和音频理解方面进行了优化,为视频内容的智能分析和处理提供了强大的支持。
端侧可用的GPT-4V级多模态大模型
MiniCPM-Llama3-V 2.5 是 OpenBMB 项目中最新发布的端侧多模态大模型,具备8B参数量,支持超过30种语言的多模态交互,并在多模态综合性能上超越了多个商用闭源模型。该模型通过模型量化、CPU、NPU、编译优化等技术实现了高效的终端设备部署,具有优秀的OCR能力、可信行为以及多语言支持等特点。
Falcon 2 是一款开源、多语言、多模态的模型,具备图像到文本转换能力。
Falcon 2 是一款具有创新功能的生成式 AI 模型,为我们创造了一种充满可能性的未来路径,只有想象力才是限制。Falcon 2 采用开源许可证,具备多语言和多模态的能力,其中独特的图像到文本转换功能标志着 AI 创新的重大进展。
Google的尖端开放视觉语言模型
PaliGemma是Google发布的一款先进的视觉语言模型,它结合了图像编码器SigLIP和文本解码器Gemma-2B,能够理解图像和文本,并通过联合训练实现图像和文本的交互理解。该模型专为特定的下游任务设计,如图像描述、视觉问答、分割等,是研究和开发领域的重要工具。
一个多图像视觉语言模型,具有训练、推理和评估方案,可从云端部署到边缘设备(如Jetson Orin和笔记本电脑)。
VILA是一个预训练的视觉语言模型(VLM),它通过大规模的交错图像-文本数据进行预训练,从而实现视频理解和多图像理解能力。VILA通过AWQ 4bit量化和TinyChat框架在边缘设备上可部署。主要优点包括:1) 交错图像-文本数据对于提升性能至关重要;2) 在交错图像-文本预训练期间不冻结大型语言模型(LLM)可以促进上下文学习;3) 重新混合文本指令数据对于提升VLM和纯文本性能至关重要;4) 标记压缩可以扩展视频帧数。VILA展示了包括视频推理、上下文学习、视觉思维链和更好的世界知识等引人入胜的能力。
一个通用的多模态模型,可用于问答、图像描述等任务
HuggingFaceM4/idefics-80b-instruct是一个开源的多模态模型,它可以接受图像和文本的输入,输出相关的文本内容。该模型在视觉问答、图像描述等任务上表现出色,是一个通用的智能助手模型。它由Hugging Face团队开发,基于开放数据集训练,提供免费使用。
面向长期视频理解的大规模多模态模型
MA-LMM是一种基于大语言模型的大规模多模态模型,主要针对长期视频理解进行设计。它采用在线处理视频的方式,并使用记忆库存储过去的视频信息,从而可以在不超过语言模型上下文长度限制或GPU内存限制的情况下,参考历史视频内容进行长期分析。MA-LMM可以无缝集成到当前的多模态语言模型中,并在长视频理解、视频问答和视频字幕等任务上取得了领先的性能。
支持同时理解和生成图像的多模态大型语言模型
Mini-Gemini是一个多模态视觉语言模型,支持从2B到34B的系列密集和MoE大型语言模型,同时具备图像理解、推理和生成能力。它基于LLaVA构建,利用双视觉编码器提供低分辨率视觉嵌入和高分辨率候选区域,采用补丁信息挖掘在高分辨率区域和低分辨率视觉查询之间进行补丁级挖掘,将文本与图像融合用于理解和生成任务。支持包括COCO、GQA、OCR-VQA、VisualGenome等多个视觉理解基准测试。
多模态视觉语言模型
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
高效多模态大型语言模型
TinyGPT-V 是一种高效的多模态大型语言模型,通过使用小型骨干网络来实现。它具有强大的语言理解和生成能力,适用于各种自然语言处理任务。TinyGPT-V 采用 Phi-2 作为预训练模型,具备出色的性能和效率。
© 2024 AIbase 备案号:闽ICP备08105208号-14