需求人群:
"Lumina-mGPT主要面向对多模态学习和人工智能有深入研究兴趣的研究人员和开发者。它适合那些需要在图像生成、图像理解和多模态任务中应用先进AI技术的用户。"
使用场景示例:
研究人员使用Lumina-mGPT生成特定场景的逼真图像。
开发者利用模型进行图像到图像的任务转换,如风格迁移。
教育领域使用该模型教授学生关于AI图像处理的基础知识。
产品特色:
文本到图像的生成:用户输入文本描述,模型生成相应图像。
图像到图像的任务:模型支持多种下游任务,用户可以方便地在任务间切换。
灵活的输入格式:支持最小约束的输入格式,适合深入探索。
简单的推理代码:提供基础的Lumina-mGPT推理代码示例。
图像理解:模型能够详细描述输入图像的内容。
多模态任务支持:模型支持包括深度估计在内的多种多模态任务。
使用教程:
1. 访问Lumina-mGPT的GitHub页面并克隆或下载代码。
2. 确保已安装必要的依赖项,如xllmx模块。
3. 根据INSTALL.md中的说明安装Lumina-mGPT。
4. 运行Gradio演示或使用提供的简单推理代码进行模型测试。
5. 根据需要调整模型参数,如目标大小和温度。
6. 利用模型进行图像生成、图像理解或其他多模态任务。
浏览量:50
最新流量情况
月访问量
5.16m
平均访问时长
00:06:42
每次访问页数
5.81
跳出率
37.20%
流量来源
直接访问
52.27%
自然搜索
32.92%
邮件
0.05%
外链引荐
12.52%
社交媒体
2.15%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.99%
德国
3.63%
印度
9.20%
俄罗斯
5.25%
美国
19.02%
多模态自回归模型,擅长文本生成图像
Lumina-mGPT是一个多模态自回归模型家族,能够执行各种视觉和语言任务,特别是在从文本描述生成灵活的逼真图像方面表现突出。该模型基于xllmx模块实现,支持以LLM为中心的多模态任务,适用于深度探索和快速熟悉模型能力。
前沿AI技术,您的智能工作助手。
Mistral AI 提供的 le Chat 是一个免费的生成性AI工作助手,旨在通过前沿的AI技术提升人类的工作效率和创造力。le Chat 结合了搜索、视觉、创意、编码等多种功能,为用户提供了一个多功能的智能平台。它不仅能够进行网络搜索并引用来源,还拥有创意画布、文档和图像理解、图像生成等功能,并且支持任务自动化。Mistral AI 的使命是将前沿AI技术交到用户手中,让用户决定如何利用这些高级AI能力。目前,所有这些功能都以免费试用的形式提供,未来将推出更高级的服务保证。
基于文本生成图像的多模态扩散变换器模型
Stable Diffusion 3.5 Medium是一个基于文本到图像的生成模型,由Stability AI开发,具有改进的图像质量、排版、复杂提示理解和资源效率。该模型使用了三个固定的预训练文本编码器,通过QK-规范化提高训练稳定性,并在前12个变换层中引入双注意力块。它在多分辨率图像生成、一致性和各种文本到图像任务的适应性方面表现出色。
高效能的文本到图像生成模型
Stable Diffusion 3.5 Large Turbo 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,采用了对抗性扩散蒸馏(ADD)技术,提高了图像质量、排版、复杂提示理解和资源效率,特别注重减少推理步骤。该模型在生成图像方面表现出色,能够理解和生成复杂的文本提示,适用于多种图像生成场景。它在Hugging Face平台上发布,遵循Stability Community License,适合研究、非商业用途以及年收入少于100万美元的组织或个人免费使用。
高性能的文本到图像生成模型
Stable Diffusion 3.5 Large 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,由 Stability AI 开发。该模型在图像质量、排版、复杂提示理解和资源效率方面都有显著提升。它使用三个固定的预训练文本编码器,并通过 QK 归一化技术提高训练稳定性。此外,该模型在训练数据和策略上使用了包括合成数据和过滤后的公开可用数据。Stable Diffusion 3.5 Large 模型在遵守社区许可协议的前提下,可以免费用于研究、非商业用途,以及年收入少于100万美元的组织或个人的商业用途。
多模态理解和生成的统一模型
Janus是一个创新的自回归框架,它通过分离视觉编码来实现多模态理解和生成的统一。这种解耦不仅缓解了视觉编码器在理解和生成中的角色冲突,还增强了框架的灵活性。Janus超越了以往的统一模型,并与特定任务的模型性能相匹配或超越。Janus的简单性、高灵活性和有效性使其成为下一代统一多模态模型的强有力候选者。
下一代多模态智能模型
Emu3是一套最新的多模态模型,仅通过下一个token预测进行训练,能够处理图像、文本和视频。它在生成和感知任务上超越了多个特定任务的旗舰模型,并且不需要扩散或组合架构。Emu3通过将多模态序列统一到一个单一的transformer模型中,简化了复杂的多模态模型设计,展示了在训练和推理过程中扩展的巨大潜力。
开源自回归视觉生成模型项目
Open-MAGVIT2是由腾讯ARC实验室开源的一个自回归图像生成模型系列,包含从300M到1.5B不同规模的模型。该项目复现了Google的MAGVIT-v2分词器,实现了在ImageNet 256×256数据集上达到1.17 rFID的先进重建性能。通过引入不对称分词技术,将大词汇表分解为不同大小的子词汇表,并引入'下一个子标记预测'来增强子标记间的交互,以提高生成质量。所有模型和代码均已开源,旨在推动自回归视觉生成领域的创新和创造力。
多模态文本到图像生成模型
EMMA是一个基于最前沿的文本到图像扩散模型ELLA构建的新型图像生成模型,能够接受多模态提示,通过创新的多模态特征连接器设计,有效整合文本和补充模态信息。该模型通过冻结原始T2I扩散模型的所有参数,并仅调整一些额外层,揭示了预训练的T2I扩散模型可以秘密接受多模态提示的有趣特性。EMMA易于适应不同的现有框架,是生成个性化和上下文感知图像甚至视频的灵活有效工具。
自回归模型在可扩展图像生成领域的新突破
LlamaGen是一个新的图像生成模型家族,它将大型语言模型的原始下一个token预测范式应用于视觉生成领域。该模型通过适当的扩展,无需对视觉信号的归纳偏差即可实现最先进的图像生成性能。LlamaGen重新审视了图像分词器的设计空间、图像生成模型的可扩展性属性以及它们的训练数据质量。
Visual Autoregressive Modeling: 新的视觉生成范式
VAR是一种新的视觉自回归建模方法,能够超越扩散模型,实现更高效的图像生成。它建立了视觉生成的幂律scaling laws,并具备零shots的泛化能力。VAR提供了一系列不同规模的预训练模型,供用户探索和使用。
支持同时理解和生成图像的多模态大型语言模型
Mini-Gemini是一个多模态视觉语言模型,支持从2B到34B的系列密集和MoE大型语言模型,同时具备图像理解、推理和生成能力。它基于LLaVA构建,利用双视觉编码器提供低分辨率视觉嵌入和高分辨率候选区域,采用补丁信息挖掘在高分辨率区域和低分辨率视觉查询之间进行补丁级挖掘,将文本与图像融合用于理解和生成任务。支持包括COCO、GQA、OCR-VQA、VisualGenome等多个视觉理解基准测试。
多模态大型语言模型
AnyGPT是一个统一的多模态大型语言模型,利用离散表示进行各种模态的统一处理,包括语音、文本、图像和音乐。AnyGPT可以在不改变当前大型语言模型架构或训练范式的情况下稳定训练。它完全依赖于数据级预处理,促进了新模态无缝集成到语言模型中,类似于新的语言的加入。我们构建了一个用于多模态对齐预训练的以文本为中心的多模态数据集。利用生成模型,我们合成了第一个大规模的任意到任意的多模态指令数据集。它由10.8万个多轮对话样例组成,多种模态交织在一起,因此使模型能够处理任意组合的多模态输入和输出。实验结果表明,AnyGPT能够促进任意到任意的多模态对话,同时在所有模态上达到与专用模型相当的性能,证明了离散表示可以有效且方便地在语言模型中统一多个模态。
统一图像生成
UNIMO-G是一个简单的多模态条件扩散框架,用于处理交错的文本和视觉输入。它包括两个核心组件:用于编码多模态提示的多模态大语言模型(MLLM)和用于基于编码的多模态输入生成图像的条件去噪扩散网络。我们利用两阶段训练策略来有效地训练该框架:首先在大规模文本-图像对上进行预训练,以开发条件图像生成能力,然后使用多模态提示进行指导调整,以实现统一图像生成能力。我们采用了精心设计的数据处理流程,包括语言接地和图像分割,用于构建多模态提示。UNIMO-G在文本到图像生成和零样本主题驱动合成方面表现出色,并且在生成涉及多个图像实体的复杂多模态提示的高保真图像方面非常有效。
多模态图像生成模型
Instruct-Imagen是一个多模态图像生成模型,通过引入多模态指令,实现对异构图像生成任务的处理,并在未知任务中实现泛化。该模型利用自然语言整合不同的模态(如文本、边缘、风格、主题等),标准化丰富的生成意图。通过在预训练文本到图像扩散模型上进行两阶段框架的微调,采用检索增强训练和多样的图像生成任务微调,使得该模型在各种图像生成数据集上的人工评估结果表明,其在领域内与先前的任务特定模型相匹配或超越,并展现出对未知和更复杂任务的有希望的泛化能力。
小型多模态模型,支持图像和文本生成
Fuyu-8B是由Adept AI训练的多模态文本和图像转换模型。它具有简化的架构和训练过程,易于理解、扩展和部署。它专为数字代理设计,可以支持任意图像分辨率,回答关于图表和图形的问题,回答基于UI的问题,并对屏幕图像进行细粒度定位。它的响应速度很快,可以在100毫秒内处理大型图像。尽管针对我们的用例进行了优化,但它在标准图像理解基准测试中表现良好,如视觉问答和自然图像字幕。请注意,我们发布的模型是一个基础模型,我们希望您根据具体的用例进行微调,例如冗长的字幕或多模态聊天。在我们的经验中,该模型对于少样本学习和各种用例的微调都表现良好。
赋予LLM查看和绘图的能力
SEED是一个大规模预训练的模型,通过对交错的文本和视觉数据进行预训练和指导调整,展现了在广泛的多模态理解和生成任务上的出色性能。SEED还具有组合性新兴能力,例如多轮上下文多模态生成,就像您的AI助手一样。SEED还包括SEED Tokenizer v1和SEED Tokenizer v2,它们可以将文本转换为图像。
多模态综合理解与创作
DreamLLM是一个学习框架,首次实现了多模态大型语言模型(LLM)在多模态理解和创作之间的协同效应。它通过直接在原始多模态空间中进行采样,生成语言和图像的后验模型。这种方法避免了像CLIP这样的外部特征提取器所固有的限制和信息损失,从而获得了更全面的多模态理解。DreamLLM还通过建模文本和图像内容以及无结构布局的原始交叉文档,有效地学习了所有条件、边缘和联合多模态分布。因此,DreamLLM是第一个能够生成自由形式交叉内容的MLLM。全面的实验证明了DreamLLM作为零样本多模态通才的卓越性能,充分利用了增强的学习协同效应。
基于Stable Diffusion 3.5 Large模型的IP适配器
SD3.5-Large-IP-Adapter是一个基于Stable Diffusion 3.5 Large模型的IP适配器,由InstantX Team研发。该模型能够将图像处理工作类比于文本处理,具有强大的图像生成能力,并且可以通过适配器技术进一步提升图像生成的质量和效果。该技术的重要性在于其能够推动图像生成技术的发展,特别是在创意工作和艺术创作领域。产品背景信息显示,该模型是由Hugging Face和fal.ai赞助的项目,并且遵循stabilityai-ai-community的许可协议。
利用AI生成印度风格的图像
BharatDiffusion是一个基于AI的图像生成模型,专门针对印度的多样化景观、文化和遗产进行微调,能够生成反映印度丰富文化和特色的高质量图像。该模型使用Stable Diffusion技术处理所有图像生成,确保内容与印度的多样性和活力相呼应。
124B参数的多模态大型语言模型
Pixtral-Large-Instruct-2411是由Mistral AI研发的124B参数的大型多模态模型,基于Mistral Large 2构建,展现出前沿级别的图像理解能力。该模型不仅能够理解文档、图表和自然图像,同时保持了Mistral Large 2在文本理解方面的领先地位。它在MathVista、DocVQA、VQAv2等数据集上达到了最先进的性能,是科研和商业应用的强大工具。
前沿级多模态AI模型,提供图像和文本理解
Pixtral Large是Mistral AI推出的一款前沿级多模态AI模型,基于Mistral Large 2构建,具备领先的图像理解能力,能够理解文档、图表和自然图像,同时保持Mistral Large 2在文本理解方面的领先地位。该模型在多模态基准测试中表现优异,特别是在MathVista、ChartQA和DocVQA等测试中超越了其他模型。Pixtral Large在MM-MT-Bench测试中也展现了竞争力,超越了包括Claude-3.5 Sonnet在内的多个模型。该模型适用于研究和教育用途的Mistral Research License (MRL),以及适用于商业用途的Mistral Commercial License。
在线图片文字叠加工具,快速创建专业效果。
Text Behind Image是一个在线工具,允许用户在图片上添加文字,创造出文字背后效果,增强视觉冲击力。这种技术在广告、社交媒体和个人项目中尤为重要,因为它能够吸引观众的注意力并传达信息。产品背景信息表明,这是一个简单、快速且专业的解决方案,用户无需复杂的设计技能即可实现出色的设计效果。目前,该工具提供免费使用,适合个人和商业项目。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
智能交互式图像编辑系统
MagicQuill是一个集成的图像编辑系统,旨在支持用户快速实现创意。该系统以简洁而功能强大的界面为起点,使用户能够通过简单的几笔操作表达他们的想法,如插入元素、擦除对象、改变颜色等。这些交互由多模态大型语言模型(MLLM)实时监控,以预测用户意图,无需输入提示。最后,我们应用强大的扩散先验,通过精心学习的双分支插件模块,精确控制编辑请求。
AI技术驱动的图片创作平台,将文字转化为图片。
千图网AI绘画是一个利用人工智能技术,将用户的文字描述转化为图像的平台。它通过深度学习算法,理解用户的创意需求,并生成相应的视觉内容。这种技术的重要性在于它极大地降低了艺术创作的门槛,使得非专业人士也能轻松创作出专业级别的图像作品。产品背景信息显示,千图网AI绘画旨在释放用户的想象力与创造力,为用户提供一个简单易用的AI创意工具库。价格方面,千图网AI绘画提供免费试用,用户可以体验AI绘画的魅力,同时也提供付费服务以满足更专业的需求。
基于文本提示修订图像的大型扩散模型
SeedEdit是Doubao Team推出的大型扩散模型,用于根据任何文本提示修订图像。它通过逐步将图像生成器与强大的图像编辑器对齐,实现了图像重建和图像再生之间的最佳平衡。SeedEdit能够实现高审美/分辨率图像的零样本稳定编辑,并支持图像的连续修订。该技术的重要性在于其能够解决图像编辑问题中成对图像数据稀缺的核心难题,通过将文本到图像(T2I)生成模型视为弱编辑模型,并通过生成带有新提示的新图像来实现“编辑”,然后将其蒸馏并与之对齐到图像条件编辑模型中。
从单张图片创建可控3D和4D场景的视频扩散模型
DimensionX是一个基于视频扩散模型的3D和4D场景生成技术,它能够从单张图片中创建出具有可控视角和动态变化的三维和四维场景。这项技术的主要优点包括高度的灵活性和逼真度,能够根据用户提供的提示词生成各种风格和主题的场景。DimensionX的背景信息显示,它是由一群研究人员共同开发的,旨在推动图像生成技术的发展。目前,该技术是免费提供给研究和开发社区使用的。
使用最新的Stable Diffusion 3.5模型生成高质量图像。
SD Image的Stable Diffusion 3.5 Image Generator是一个在线图像生成器,它利用最新的Stable Diffusion 3.5模型,包括Medium, Large, Large Turbo,来生成高质量的图像。这项技术的重要性在于它能够通过文本提示(prompt)快速生成图像,为设计师、艺术家和创意工作者提供灵感和便利。产品背景信息显示,SD Image是一个在线平台,用户可以通过它找到灵感、生成图像、探索不同的prompt和模型。目前,该产品提供免费试用,适合需要快速生成图像的用户。
© 2024 AIbase 备案号:闽ICP备08105208号-14