需求人群:
"LongLLaVA模型适合于研究人员和开发者,特别是那些专注于图像识别、图像分类和图像分析等计算机视觉领域的专业人士。它可以帮助他们提高模型的性能,优化图像处理流程,并在相关领域实现创新。"
使用场景示例:
用于图像分类任务,识别不同类别的图像
在医学图像分析中,辅助诊断和图像标注
用于社交媒体平台上的图像内容审核和过滤
产品特色:
支持大规模图像数据的高效处理和分析
采用混合架构,优化模型在图像任务上的性能
提供灵活的模型训练和评估框架,支持单图像和多图像任务
实现图像与指令的精准对齐,提升图像理解的准确性
支持自定义数据集的构建和模型训练,满足特定需求
提供详细的文档和脚本,方便用户快速上手和使用
使用教程:
1. 访问GitHub页面,克隆或下载LongLLaVA模型
2. 阅读README文档,了解模型的架构和功能
3. 根据文档指导,准备自定义数据集或使用预设数据集
4. 执行预训练脚本`bash Pretrain.sh`进行模型的初步训练
5. 根据需求选择单图像或多图像指令调整脚本`bash SingleImageSFT.sh`或`bash MultiImageSFT.sh`进行进一步训练
6. 运行评估脚本`Eval.sh`,测试模型在图像任务上的性能
7. 根据反馈调整模型参数,优化模型性能
8. 将训练好的模型应用于实际图像处理任务中
浏览量:32
最新流量情况
月访问量
4.92m
平均访问时长
00:06:33
每次访问页数
6.11
跳出率
36.20%
流量来源
直接访问
51.61%
自然搜索
33.46%
邮件
0.04%
外链引荐
12.58%
社交媒体
2.19%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.25%
德国
3.63%
印度
9.32%
俄罗斯
4.28%
美国
19.34%
高效扩展多模态大型语言模型至1000图像
LongLLaVA是一个多模态大型语言模型,通过混合架构高效扩展至1000图像,旨在提升图像处理和理解能力。该模型通过创新的架构设计,实现了在大规模图像数据上的有效学习和推理,对于图像识别、分类和分析等领域具有重要意义。
InternVL2.5-MPO系列模型,基于InternVL2.5和混合偏好优化,展现卓越性能。
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,基于InternVL2.5和混合偏好优化(MPO)构建。该系列模型在多模态任务中表现出色,能够处理图像、文本和视频数据,并生成高质量的文本响应。模型采用'ViT-MLP-LLM'范式,通过像素unshuffle操作和动态分辨率策略优化视觉处理能力。此外,模型还引入了多图像和视频数据的支持,进一步扩展了其应用场景。InternVL2.5-MPO在多模态能力评估中超越了多个基准模型,证明了其在多模态领域的领先地位。
先进的多模态大型语言模型,具备卓越的多模态推理能力。
InternVL2_5-26B-MPO-AWQ 是由 OpenGVLab 开发的多模态大型语言模型,旨在通过混合偏好优化提升模型的推理能力。该模型在多模态任务中表现出色,能够处理图像和文本之间的复杂关系。它采用了先进的模型架构和优化技术,使其在多模态数据处理方面具有显著优势。该模型适用于需要高效处理和理解多模态数据的场景,如图像描述生成、多模态问答等。其主要优点包括强大的推理能力和高效的模型架构。
多模态大型语言模型,展示卓越的整体性能。
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,它基于InternVL2.5和混合偏好优化构建。该模型整合了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL2.5-MPO在新版本中保留了与InternVL 2.5及其前身相同的模型架构,遵循“ViT-MLP-LLM”范式。该模型支持多图像和视频数据,通过混合偏好优化(MPO)进一步提升模型性能,使其在多模态任务中表现更优。
多模态大型语言模型,展示卓越的整体性能
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,基于InternVL2.5和混合偏好优化构建。该模型集成了新增量预训练的InternViT和各种预训练的大型语言模型,如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。它支持多图像和视频数据,并且在多模态任务中表现出色,能够理解和生成与图像相关的文本内容。
先进的多模态大型语言模型
InternVL2_5-2B-MPO是一个多模态大型语言模型系列,展示了卓越的整体性能。该系列基于InternVL2.5和混合偏好优化构建。它集成了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。该模型在多模态任务中表现出色,能够处理包括图像和文本在内的多种数据类型,适用于需要理解和生成多模态内容的场景。
视频序列理解的GPU实现模型
PPLLaVA是一个高效的视频大型语言模型,它结合了细粒度视觉提示对齐、用户指令的卷积风格池化的视觉令牌压缩以及CLIP上下文扩展。该模型在VideoMME、MVBench、VideoChatGPT Bench和VideoQA Bench等数据集上建立了新的最先进结果,仅使用1024个视觉令牌,吞吐量提高了8倍。
多模态大型语言模型,支持图像和文本处理。
Llama-3.2-11B-Vision 是 Meta 发布的一款多模态大型语言模型(LLMs),它结合了图像和文本处理的能力,旨在提高视觉识别、图像推理、图像描述和回答有关图像的一般问题的性能。该模型在常见的行业基准测试中的表现超过了众多开源和封闭的多模态模型。
前沿级多模态大型语言模型,实现视觉-语言任务的先进性能。
NVLM 1.0是一系列前沿级的多模态大型语言模型(LLMs),在视觉-语言任务上取得了与领先专有模型和开放访问模型相媲美的先进成果。值得注意的是,NVLM 1.0在多模态训练后,其文本性能甚至超过了其LLM主干模型。我们为社区开源了模型权重和代码。
多模态大型语言模型设计空间探索
EAGLE是一个面向视觉中心的高分辨率多模态大型语言模型(LLM)系列,通过混合视觉编码器和不同输入分辨率来加强多模态LLM的感知能力。该模型包含基于通道连接的'CLIP+X'融合,适用于具有不同架构(ViT/ConvNets)和知识(检测/分割/OCR/SSL)的视觉专家。EAGLE模型家族支持超过1K的输入分辨率,并在多模态LLM基准测试中取得了优异的成绩,特别是在对分辨率敏感的任务上,如光学字符识别和文档理解。
视频理解与推理的免训练大型语言模型。
SlowFast-LLaVA是一个无需训练的多模态大型语言模型,专为视频理解和推理设计。它无需在任何数据上进行微调,就能在多种视频问答任务和基准测试中达到与最先进视频大型语言模型相当甚至更好的性能。
一种用于扩展多模态大型语言模型(LLMs)的先进架构。
CuMo是一种多模态大型语言模型(LLMs)的扩展架构,它通过在视觉编码器和MLP连接器中融入稀疏的Top-K门控专家混合(MoE)块,提高了模型的可扩展性,同时在推理时几乎不增加激活参数。CuMo在预训练MLP块后,初始化MoE块中的每个专家,并在视觉指令调整阶段使用辅助损失以确保专家的均衡负载。CuMo在各种VQA和视觉指令遵循基准测试中超越了其他同类模型,且完全基于开源数据集进行训练。
基于大规模视觉-语言模型的专家混合模型
MoE-LLaVA是一种基于大规模视觉-语言模型的专家混合模型,展现出在多模态学习中出色的性能。其具有较少的参数,但表现出较高的性能,并且可以在短时间内完成训练。该模型支持Gradio Web UI和CLI推理,并提供模型库、需求和安装、训练和验证、自定义、可视化、API等功能。
世界领先最快、最便宜的无限AI视频生成器和免费AI图片生成器。
Everlyn AI是世界领先的AI视频生成器和免费AI图片生成器,使用先进的AI技术将您的想法转化为令人惊叹的视觉效果。它具有颠覆性的性能指标,包括15秒快速生成速度、25倍降低成本、8倍更高效率。
通过Imgkits的AI图像处理工具,轻松转换您的视觉内容,即刻获得令人印象深刻的结果。
Imgkits是一款提供AI图像和视频处理工具的在线平台,能够帮助用户快速编辑、修复和定制照片。其主要优点包括强大的AI功能、简单易用的界面、支持多种图片格式、批量处理高效率等。Imgkits定位为免费在线图像编辑工具,适用于个人和专业用户。
使用 AI 技术无缝合并图像,轻松生成创意艺术。
AI 图像融合工具利用先进的 AI 技术,能够快速无缝地合并多张图片,生成高质量的视觉效果。该工具适合数字艺术家、营销人员和摄影师等专业人士使用。定价方面,提供多个套餐,包括免费和付费版本,以满足不同用户的需求。
高效的视觉编码技术,提升视觉语言模型性能。
FastVLM 是一种高效的视觉编码模型,专为视觉语言模型设计。它通过创新的 FastViTHD 混合视觉编码器,减少了高分辨率图像的编码时间和输出的 token 数量,使得模型在速度和精度上表现出色。FastVLM 的主要定位是为开发者提供强大的视觉语言处理能力,适用于各种应用场景,尤其在需要快速响应的移动设备上表现优异。
Seed-Coder 是一个开源的 8B 代码大型语言模型系列。
Seed-Coder 是字节跳动 Seed 团队推出的开源代码大型语言模型系列,包含基础、指令和推理模型,旨在通过最小的人力投入,自主管理代码训练数据,从而显著提升编程能力。该模型在同类开源模型中表现优越,适合于各种编码任务,定位于推动开源 LLM 生态的发展,适用于研究和工业界。
一种无需搜索即可激励 LLM 搜索能力的框架。
ZeroSearch 是一种新颖的强化学习框架,旨在激励大型语言模型(LLMs)的搜索能力,而无需与实际搜索引擎进行交互。通过监督微调,ZeroSearch 转变 LLM 为能够生成相关和无关文档的检索模块,并引入课程推出机制来逐步激发模型的推理能力。该技术的主要优点在于其性能优于基于真实搜索引擎的模型,同时产生的 API 成本为零。它适用于各种规模的 LLM,并支持不同的强化学习算法,适合需要高效检索能力的研究和开发团队。
用于生成和推荐笔记的可检索大型语言模型。
NoteLLM 是一款专注于用户生成内容的可检索大型语言模型,旨在提升推荐系统的性能。通过将主题生成与嵌入生成相结合,NoteLLM 提高了对笔记内容的理解与处理能力。该模型采用了端到端的微调策略,适用于多模态输入,增强了在多样化内容领域的应用潜力。其重要性在于能够有效提升笔记推荐的准确性和用户体验,特别适用于小红书等 UGC 平台。
在Mac上两次点击,无需降低分辨率即可压缩图像大小。
Compress Image是一款用于Mac的桌面客户端,可以在不损失分辨率的情况下,通过两次点击轻松压缩任意数量的图像文件。该产品的主要优点是快速、简便、无需上传至服务器,可减小文件大小高达90%。价格为一次性支付3.99美元,定位于图像处理工具。
快速简便的图片格式转换工具。
imgKonvert是一个快速简便的图片格式转换工具,支持多种常见格式的转换,如PNG、JPG、WebP等。通过在浏览器中进行转换,保证数据安全性和隐私,无需注册即可使用。
使用文本描述您的想法,我们的高级AI将将您的文本提示转换为引人注目的图像。让文字变成图像,轻松实现!
ImagineArt AI工具是一款人工智能艺术生成工具,利用先进的AI技术,可以将文字描述转化为生动的图像作品。其主要优点包括快速生成图像、灵活性高、用户友好,定位于为用户提供创意灵感和图像生成解决方案。
AI图像处理技术,为您的图片增添纹理,实时创建惊艳的视觉变换。
RetextureAI利用AI技术实现图像处理,能够快速为图片增添纹理,实现视觉上的瞬间变换。其主要优点在于提供先进的纹理生成功能,让用户轻松实现图片的艺术化处理。
通过AI创建和共享图像的平台。
Photogen by AI是一个通过AI快速生成高质量照片的平台,用户可上传自拍照片并使用AI模型转化为专业级肖像。价格分为Hobby、Pro和Enterprise三个档次。
InstantCharacter 是一种基于扩散变换器的角色个性化框架。
InstantCharacter 是一个基于扩散变换器的角色个性化框架,旨在克服现有学习基础自定义方法的局限性。该框架的主要优点在于开放域个性化、高保真结果以及有效的角色特征处理能力,适合各种角色外观、姿势和风格的生成。该框架利用一个包含千万级样本的大规模数据集进行训练,以实现角色一致性和文本可编辑性的同时优化。该技术为角色驱动的图像生成设定了新的基准。
© 2025 AIbase 备案号:闽ICP备08105208号-14