需求人群:
"Janus的目标受众是研究人员、开发者和企业,特别是那些在多模态人工智能领域寻求创新解决方案的群体。它的高性能和灵活性使其成为研究和商业应用的理想选择,如自动内容生成、图像和视频分析等。"
使用场景示例:
研究人员使用Janus来探索多模态数据的潜在关联和模式。
开发者利用Janus创建能够理解和生成复杂内容的应用程序。
企业采用Janus来提升其产品的智能化水平,如通过图像和文本分析来改善用户体验。
产品特色:
多模态理解和生成:Janus能够处理和生成包括文本和图像在内的多种模态数据。
视觉编码分离:通过将视觉编码分离成不同的路径,提高了模型在理解和生成任务中的性能。
统一的变换器架构:使用单一的变换器架构来处理多种模态的数据,增强了模型的灵活性和效率。
高性能:Janus在多模态任务中的表现超越了以往的统一模型,并且与特定任务模型相匹敌。
易于使用:提供简单的安装和使用说明,方便研究人员和开发者快速上手。
开源:Janus的代码在GitHub上公开,允许社区进行贡献和改进。
支持商业使用:在遵守许可证条款的前提下,Janus支持商业用途。
使用教程:
1. 安装必要的依赖,运行pip install -e .来安装Janus。
2. 下载并加载Janus模型,可以通过Hugging Face平台获取。
3. 准备输入数据,包括文本和图像等多模态信息。
4. 使用Janus的API进行模型推理,生成所需的输出。
5. 根据需要调整模型参数,以优化性能和结果。
6. 将Janus集成到更大的应用程序或研究项目中。
7. 遵循许可证要求,合法使用Janus模型。
8. 参与社区贡献,通过GitHub提交改进和新功能。
浏览量:4
最新流量情况
月访问量
5.16m
平均访问时长
00:06:42
每次访问页数
5.81
跳出率
37.20%
流量来源
直接访问
52.27%
自然搜索
32.92%
邮件
0.05%
外链引荐
12.52%
社交媒体
2.15%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.99%
德国
3.63%
印度
9.20%
俄罗斯
5.25%
美国
19.02%
新一代自回归框架,统一多模态理解和生成
Janus是一个创新的自回归框架,通过将视觉编码分离成不同的路径,同时利用单一的、统一的变换器架构进行处理,解决了以往方法的局限性。这种解耦不仅减轻了视觉编码器在理解和生成中的角色冲突,还增强了框架的灵活性。Janus的性能超越了以往的统一模型,并且达到了或超过了特定任务模型的性能。Janus的简单性、高灵活性和有效性使其成为下一代统一多模态模型的强有力候选。
多模态理解和生成的统一模型
Janus是一个创新的自回归框架,它通过分离视觉编码来实现多模态理解和生成的统一。这种解耦不仅缓解了视觉编码器在理解和生成中的角色冲突,还增强了框架的灵活性。Janus超越了以往的统一模型,并与特定任务的模型性能相匹配或超越。Janus的简单性、高灵活性和有效性使其成为下一代统一多模态模型的强有力候选者。
多模态原生混合专家模型
Aria是一个多模态原生混合专家模型,具有强大的多模态、语言和编码任务性能。它在视频和文档理解方面表现出色,支持长达64K的多模态输入,能够在10秒内描述一个256帧的视频。Aria模型的参数量为25.3B,能够在单个A100(80GB)GPU上使用bfloat16精度进行加载。Aria的开发背景是满足对多模态数据理解的需求,特别是在视频和文档处理方面。它是一个开源模型,旨在推动多模态人工智能的发展。
Qwen2.5-Coder系列中的1.5B参数量级代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该模型在训练中包含了5.5万亿的源代码、文本代码关联、合成数据等,是目前开源代码语言模型中的佼佼者,其编码能力可与GPT-4相媲美。此外,Qwen2.5-Coder还具备更全面的现实世界应用基础,如代码代理等,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
Qwen2.5-Coder系列中的1.5B参数代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、推理和修复而设计。基于强大的Qwen2.5,该模型在训练时包含了5.5万亿的源代码、文本代码基础、合成数据等,使其在代码能力上达到了开源代码LLM的最新水平。它不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
124B参数的多模态大型语言模型
Pixtral-Large-Instruct-2411是由Mistral AI研发的124B参数的大型多模态模型,基于Mistral Large 2构建,展现出前沿级别的图像理解能力。该模型不仅能够理解文档、图表和自然图像,同时保持了Mistral Large 2在文本理解方面的领先地位。它在MathVista、DocVQA、VQAv2等数据集上达到了最先进的性能,是科研和商业应用的强大工具。
前沿级多模态AI模型,提供图像和文本理解
Pixtral Large是Mistral AI推出的一款前沿级多模态AI模型,基于Mistral Large 2构建,具备领先的图像理解能力,能够理解文档、图表和自然图像,同时保持Mistral Large 2在文本理解方面的领先地位。该模型在多模态基准测试中表现优异,特别是在MathVista、ChartQA和DocVQA等测试中超越了其他模型。Pixtral Large在MM-MT-Bench测试中也展现了竞争力,超越了包括Claude-3.5 Sonnet在内的多个模型。该模型适用于研究和教育用途的Mistral Research License (MRL),以及适用于商业用途的Mistral Commercial License。
前沿AI技术,您的智能工作助手。
Mistral AI 提供的 le Chat 是一个免费的生成性AI工作助手,旨在通过前沿的AI技术提升人类的工作效率和创造力。le Chat 结合了搜索、视觉、创意、编码等多种功能,为用户提供了一个多功能的智能平台。它不仅能够进行网络搜索并引用来源,还拥有创意画布、文档和图像理解、图像生成等功能,并且支持任务自动化。Mistral AI 的使命是将前沿AI技术交到用户手中,让用户决定如何利用这些高级AI能力。目前,所有这些功能都以免费试用的形式提供,未来将推出更高级的服务保证。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
Qwen2.5-Coder系列中的3B参数量指令调优模型
Qwen2.5-Coder-3B-Instruct-GPTQ-Int8是Qwen2.5-Coder系列中的一种大型语言模型,专门针对代码生成、代码推理和代码修复进行了优化。该模型基于Qwen2.5,训练数据包括源代码、文本代码关联、合成数据等,达到5.5万亿个训练令牌。Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。该模型还为现实世界中的应用提供了更全面的基础,如代码代理,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
Qwen2.5-Coder系列中的3B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,训练令牌扩展到5.5万亿,包括源代码、文本代码接地、合成数据等。Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。该模型在实际应用中提供了更全面的基础,如代码代理,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
智能交互式图像编辑系统
MagicQuill是一个集成的图像编辑系统,旨在支持用户快速实现创意。该系统以简洁而功能强大的界面为起点,使用户能够通过简单的几笔操作表达他们的想法,如插入元素、擦除对象、改变颜色等。这些交互由多模态大型语言模型(MLLM)实时监控,以预测用户意图,无需输入提示。最后,我们应用强大的扩散先验,通过精心学习的双分支插件模块,精确控制编辑请求。
开源代码生成语言模型
Qwen2.5-Coder-32B-Instruct-GPTQ-Int8是Qwen系列中针对代码生成优化的大型语言模型,拥有32亿参数,支持长文本处理,是当前开源代码生成领域最先进的模型之一。该模型基于Qwen2.5进行了进一步的训练和优化,不仅在代码生成、推理和修复方面有显著提升,而且在数学和通用能力上也保持了优势。模型采用GPTQ 8-bit量化技术,以减少模型大小并提高运行效率。
开源代码生成大型语言模型
Qwen2.5-Coder是一系列针对代码生成优化的大型语言模型,覆盖了0.5、1.5、3、7、14、32亿参数的六种主流模型尺寸,以满足不同开发者的需求。Qwen2.5-Coder在代码生成、代码推理和代码修复方面有显著提升,基于强大的Qwen2.5,训练令牌扩展到5.5万亿,包括源代码、文本代码接地、合成数据等,成为当前最先进的开源代码LLM,其编码能力与GPT-4o相匹配。此外,Qwen2.5-Coder还提供了更全面的基础,适用于现实世界中的代码代理等应用场景。
Qwen2.5-Coder系列中的1.5B参数代码生成模型
Qwen2.5-Coder-1.5B是Qwen2.5-Coder系列中的一款大型语言模型,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该模型通过扩展训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,成为当前开源代码LLM中的佼佼者,编码能力媲美GPT-4o。此外,Qwen2.5-Coder-1.5B还强化了数学和通用能力,为实际应用如代码代理提供了更全面的基础。
Qwen2.5-Coder系列中的1.5B参数代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于Qwen2.5的强大能力,该模型在训练时使用了5.5万亿的源代码、文本代码基础、合成数据等,是目前开源代码生成语言模型中的佼佼者,编码能力与GPT-4o相媲美。它不仅增强了编码能力,还保持了在数学和通用能力方面的优势,为实际应用如代码代理提供了更全面的基础。
Qwen2.5-Coder系列的3B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该系列模型通过增加训练令牌至5.5万亿,包括源代码、文本代码接地、合成数据等,显著提升了代码生成、推理和修复能力。Qwen2.5-Coder-3B是该系列中的一个模型,拥有3.09B参数,36层,16个注意力头(Q)和2个注意力头(KV),全32,768令牌上下文长度。该模型是目前开源代码LLM中的佼佼者,编码能力与GPT-4o相匹配,为开发者提供了一个强大的代码辅助工具。
开源视频生成模型,支持10秒视频和更高分辨率。
CogVideoX1.5-5B-SAT是由清华大学知识工程与数据挖掘团队开发的开源视频生成模型,是CogVideoX模型的升级版。该模型支持生成10秒视频,并支持更高分辨率的视频生成。模型包含Transformer、VAE和Text Encoder等模块,能够根据文本描述生成视频内容。CogVideoX1.5-5B-SAT模型以其强大的视频生成能力和高分辨率支持,为视频内容创作者提供了一个强大的工具,尤其在教育、娱乐和商业领域有着广泛的应用前景。
现代Python数据框库,专为人工智能设计。
DataChain是一个现代的Python数据框库,专为人工智能设计。它旨在将非结构化数据组织成数据集,并在本地机器上大规模处理数据。DataChain不抽象或隐藏AI模型和API调用,而是帮助将它们集成到后现代数据堆栈中。该产品以其高效性、易用性和强大的数据处理能力为主要优点,支持多种数据存储和处理方式,包括图像、视频、文本等多种数据类型,并且能够与PyTorch和TensorFlow等深度学习框架无缝对接。DataChain是开源的,遵循Apache-2.0许可协议,免费供用户使用。
ComfyUI中集成的最新视频生成模型
Mochi是Genmo最新推出的开源视频生成模型,它在ComfyUI中经过优化,即使使用消费级GPU也能实现。Mochi以其高保真度动作和卓越的提示遵循性而著称,为ComfyUI社区带来了最先进的视频生成能力。Mochi模型在Apache 2.0许可下发布,这意味着开发者和创作者可以自由使用、修改和集成Mochi,而不受限制性许可的阻碍。Mochi能够在消费级GPU上运行,如4090,且在ComfyUI中支持多种注意力后端,使其能够适应小于24GB的VRAM。
视觉语言模型,结合图像和文本信息进行智能处理。
Aquila-VL-2B模型是一个基于LLava-one-vision框架训练的视觉语言模型(VLM),选用Qwen2.5-1.5B-instruct模型作为语言模型(LLM),并使用siglip-so400m-patch14-384作为视觉塔。该模型在自建的Infinity-MM数据集上进行训练,包含约4000万图像-文本对。该数据集结合了从互联网收集的开源数据和使用开源VLM模型生成的合成指令数据。Aquila-VL-2B模型的开源,旨在推动多模态性能的发展,特别是在图像和文本的结合处理方面。
首个同时支持文生和图生的3D开源模型
腾讯混元3D是一个开源的3D生成模型,旨在解决现有3D生成模型在生成速度和泛化能力上的不足。该模型采用两阶段生成方法,第一阶段使用多视角扩散模型快速生成多视角图像,第二阶段通过前馈重建模型快速重建3D资产。混元3D-1.0模型能够帮助3D创作者和艺术家自动化生产3D资产,支持快速单图生3D,10秒内完成端到端生成,包括mesh和texture提取。
高效优化的小型语言模型,专为设备端应用设计。
MobileLLM-125M是由Meta开发的自动回归语言模型,它利用优化的变换器架构,专为资源受限的设备端应用而设计。该模型集成了包括SwiGLU激活函数、深度薄架构、嵌入共享和分组查询注意力等多项关键技术。MobileLLM-125M/350M在零样本常识推理任务上相较于前代125M/350M SoTA模型分别取得了2.7%和4.3%的准确率提升。该模型的设计理念可有效扩展到更大模型,MobileLLM-600M/1B/1.5B均取得了SoTA结果。
开源的全双工音频生成基础模型
hertz-dev是Standard Intelligence开源的全双工、仅音频的变换器基础模型,拥有85亿参数。该模型代表了可扩展的跨模态学习技术,能够将单声道16kHz语音转换为8Hz潜在表示,具有1kbps的比特率,性能优于其他音频编码器。hertz-dev的主要优点包括低延迟、高效率和易于研究人员进行微调和构建。产品背景信息显示,Standard Intelligence致力于构建对全人类有益的通用智能,而hertz-dev是这一旅程的第一步。
基于Llama-3-8B的多模态大型语言模型,专注于UI任务。
Ferret-UI是首个以用户界面为中心的多模态大型语言模型(MLLM),专为指代表达、定位和推理任务设计。它基于Gemma-2B和Llama-3-8B构建,能够执行复杂的用户界面任务。这个版本遵循了Apple的研究论文,是一个强大的工具,可以用于图像文本到文本的任务,并且在对话和文本生成方面具有优势。
大规模视频生成的自回归扩散模型
MarDini是Meta AI Research推出的一款视频扩散模型,它将掩码自回归(MAR)的优势整合到统一的扩散模型(DM)框架中。该模型能够根据任意数量的掩码帧在任意帧位置进行视频生成,支持视频插值、图像到视频生成以及视频扩展等多种视频生成任务。MarDini的设计高效,将大部分计算资源分配给低分辨率规划模型,使得在大规模上进行空间-时间注意力成为可能。MarDini在视频插值方面树立了新的标杆,并且在几次推理步骤内,就能高效生成与更昂贵的高级图像到视频模型相媲美的视频。
基于文本生成图像的多模态扩散变换器模型
Stable Diffusion 3.5 Medium是一个基于文本到图像的生成模型,由Stability AI开发,具有改进的图像质量、排版、复杂提示理解和资源效率。该模型使用了三个固定的预训练文本编码器,通过QK-规范化提高训练稳定性,并在前12个变换层中引入双注意力块。它在多分辨率图像生成、一致性和各种文本到图像任务的适应性方面表现出色。
多语言大型语言模型,支持23种语言
Aya Expanse是一个具有高级多语言能力的开放权重研究模型。它专注于将高性能的预训练模型与Cohere For AI一年的研究成果相结合,包括数据套利、多语言偏好训练、安全调整和模型合并。该模型是一个强大的多语言大型语言模型,服务于23种语言,包括阿拉伯语、中文(简体和繁体)、捷克语、荷兰语、英语、法语、德语、希腊语、希伯来语、印地语、印尼语、意大利语、日语、韩语、波斯语、波兰语、葡萄牙语、罗马尼亚语、俄语、西班牙语、土耳其语、乌克兰语和越南语。
© 2024 AIbase 备案号:闽ICP备08105208号-14