需求人群:
"Tora的目标受众主要是视频内容创作者、动画师和视觉效果专家,他们需要一个能够精确控制视频动态和运动的技术。Tora提供了一种创新的方式来生成高质量的视频内容,特别适合需要高度定制化动态效果的复杂项目。"
使用场景示例:
生成具有特定轨迹的自然景观视频,如飘动的玫瑰与雪山背景。
创建具有流畅动态的虚拟场景,例如水下飞翔的海鸥和五彩斑斓的珊瑚礁。
制作具有精确运动控制的商业广告,例如在沙漠中上升的红色氦气球。
产品特色:
轨迹提取器(TE):将任意轨迹编码为具有层次性的时间空间运动补丁。
空间-时间扩散变换器:结合3D视频压缩网络,有效保存连续帧之间的运动信息。
运动引导融合器(MGF):使用自适应归一化层将多级运动条件无缝注入DiT块中。
高运动保真度:精确控制视频内容的动态,生成与物理世界运动相一致的视频。
多分辨率支持:能够生成不同分辨率的高质量视频。
长时视频生成:支持生成具有延长持续时间的视频内容。
可扩展性:与DiT的可扩展性相匹配,适用于不同视频生成需求。
物理世界运动模拟:精确模拟现实世界中的运动和动力学。
使用教程:
步骤1:确定视频内容的轨迹和动态要求。
步骤2:使用Tora的轨迹提取器(TE)将轨迹编码为时间空间运动补丁。
步骤3:通过空间-时间扩散变换器生成视频的初始草图。
步骤4:利用运动引导融合器(MGF)将运动条件注入到DiT块中。
步骤5:调整和优化生成的视频,确保运动的准确性和自然性。
步骤6:输出最终的视频内容,满足特定的质量和动态需求。
浏览量:296
最新流量情况
月访问量
181
平均访问时长
00:00:00
每次访问页数
1.00
跳出率
93.46%
流量来源
直接访问
50.19%
自然搜索
9.26%
邮件
0
外链引荐
0
社交媒体
40.55%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
印度
100.00%
视频生成的轨迹导向扩散变换器
Tora是一种基于扩散变换器(DiT)的视频生成模型,它通过集成文本、视觉和轨迹条件,实现了对视频内容动态的精确控制。Tora的设计充分利用了DiT的可扩展性,允许在不同的持续时间、纵横比和分辨率下生成高质量的视频内容。该模型在运动保真度和物理世界运动模拟方面表现出色,为视频内容创作提供了新的可能性。
统一可控的视频生成方法
AnimateAnything是一个统一的可控视频生成方法,它支持在不同条件下进行精确和一致的视频操作,包括相机轨迹、文本提示和用户动作注释。该技术通过设计多尺度控制特征融合网络来构建不同条件下的通用运动表示,并将所有控制信息转换为逐帧光流,以此作为运动先导来指导视频生成。此外,为了减少大规模运动引起的闪烁问题,提出了基于频率的稳定模块,以确保视频在频域的一致性,增强时间连贯性。实验表明,AnimateAnything的方法优于现有的最先进方法。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
开源视频生成模型,支持10秒视频和更高分辨率。
CogVideoX1.5-5B-SAT是由清华大学知识工程与数据挖掘团队开发的开源视频生成模型,是CogVideoX模型的升级版。该模型支持生成10秒视频,并支持更高分辨率的视频生成。模型包含Transformer、VAE和Text Encoder等模块,能够根据文本描述生成视频内容。CogVideoX1.5-5B-SAT模型以其强大的视频生成能力和高分辨率支持,为视频内容创作者提供了一个强大的工具,尤其在教育、娱乐和商业领域有着广泛的应用前景。
用户视频的生成性视频摄像机控制
ReCapture是一种从单一用户提供的视频生成新视频和新颖摄像机轨迹的方法。该技术允许我们从完全不同的角度重新生成源视频,并带有电影级别的摄像机运动。ReCapture通过使用多视图扩散模型或基于深度的点云渲染生成带有新摄像机轨迹的嘈杂锚视频,然后通过我们提出的掩蔽视频微调技术将锚视频重新生成为干净且时间上一致的重新角度视频。这种技术的重要性在于它能够利用视频模型的强大先验,将近似的视频重新生成为时间上一致且美观的视频。
高度表现力的肖像动画技术
字节跳动智能创作团队推出最新单图视频驱动技术 X-Portrait 2。X-Portrait 2是一种肖像动画技术,它通过用户提供的静态肖像图像和驱动表演视频,能够生成具有高度表现力和真实感的角色动画和视频片段。这项技术显著降低了现有的动作捕捉、角色动画和内容创作流程的复杂性。X-Portrait 2通过构建一个最先进的表情编码器模型,隐式编码输入中的每一个微小表情,并通过大规模数据集进行训练。然后,该编码器与强大的生成扩散模型结合,生成流畅且富有表现力的视频。X-Portrait 2能够传递微妙和微小的面部表情,包括撅嘴、吐舌、脸颊充气和皱眉等具有挑战性的表情,并在生成的视频中实现高保真的情感传递。
ComfyUI中集成的最新视频生成模型
Mochi是Genmo最新推出的开源视频生成模型,它在ComfyUI中经过优化,即使使用消费级GPU也能实现。Mochi以其高保真度动作和卓越的提示遵循性而著称,为ComfyUI社区带来了最先进的视频生成能力。Mochi模型在Apache 2.0许可下发布,这意味着开发者和创作者可以自由使用、修改和集成Mochi,而不受限制性许可的阻碍。Mochi能够在消费级GPU上运行,如4090,且在ComfyUI中支持多种注意力后端,使其能够适应小于24GB的VRAM。
生成和交互控制开放世界游戏视频的扩散变换模型
GameGen-X是专为生成和交互控制开放世界游戏视频而设计的扩散变换模型。该模型通过模拟游戏引擎的多种特性,如创新角色、动态环境、复杂动作和多样事件,实现了高质量、开放领域的视频生成。此外,它还提供了交互控制能力,能够根据当前视频片段预测和改变未来内容,从而实现游戏玩法模拟。为了实现这一愿景,我们首先从零开始收集并构建了一个开放世界视频游戏数据集(OGameData),这是第一个也是最大的开放世界游戏视频生成和控制数据集,包含超过150款游戏的100多万个多样化游戏视频片段,这些片段都配有GPT-4o的信息性字幕。GameGen-X经历了两阶段的训练过程,包括基础模型预训练和指令调优。首先,模型通过文本到视频生成和视频续集进行预训练,赋予了其长序列、高质量开放领域游戏视频生成的能力。进一步,为了实现交互控制能力,我们设计了InstructNet来整合与游戏相关的多模态控制信号专家。这使得模型能够根据用户输入调整潜在表示,首次在视频生成中统一角色交互和场景内容控制。在指令调优期间,只有InstructNet被更新,而预训练的基础模型被冻结,使得交互控制能力的整合不会损失生成视频内容的多样性和质量。GameGen-X代表了使用生成模型进行开放世界视频游戏设计的一次重大飞跃。它展示了生成模型作为传统渲染技术的辅助工具的潜力,有效地将创造性生成与交互能力结合起来。
高保真文本引导的音乐生成与编辑模型
MelodyFlow是一个基于文本控制的高保真音乐生成和编辑模型,它使用连续潜在表示序列,避免了离散表示的信息丢失问题。该模型基于扩散变换器架构,经过流匹配目标训练,能够生成和编辑多样化的高质量立体声样本,且具有文本描述的简单性。MelodyFlow还探索了一种新的正则化潜在反转方法,用于零样本测试时的文本引导编辑,并展示了其在多种音乐编辑提示中的优越性能。该模型在客观和主观指标上进行了评估,证明了其在标准文本到音乐基准测试中的质量与效率上与评估基线相当,并且在音乐编辑方面超越了以往的最先进技术。
一种用于扩散变换器的上下文LoRA微调技术
In-Context LoRA是一种用于扩散变换器(DiTs)的微调技术,它通过结合图像而非仅仅文本,实现了在保持任务无关性的同时,对特定任务进行微调。这种技术的主要优点是能够在小数据集上进行有效的微调,而不需要对原始DiT模型进行任何修改,只需改变训练数据即可。In-Context LoRA通过联合描述多张图像并应用任务特定的LoRA微调,生成高保真度的图像集合,更好地符合提示要求。该技术对于图像生成领域具有重要意义,因为它提供了一种强大的工具,可以在不牺牲任务无关性的前提下,为特定任务生成高质量的图像。
基于Transformer的实时开放世界AI模型
Oasis是由Decart AI开发的首个可玩、实时、开放世界的AI模型,它是一个互动视频游戏,由Transformer端到端生成,基于逐帧生成。Oasis能够接收用户键盘和鼠标输入,实时生成游戏玩法,内部模拟物理、游戏规则和图形。该模型通过直接观察游戏玩法学习,允许用户移动、跳跃、拾取物品、破坏方块等。Oasis被视为研究更复杂交互世界的基础模型的第一步,未来可能取代传统的游戏引擎。Oasis的实现需要模型架构的改进和模型推理技术的突破,以实现用户与模型的实时交互。Decart AI采用了最新的扩散训练和Transformer模型方法,并结合了大型语言模型(LLMs)来训练一个自回归模型,该模型可以根据用户即时动作生成视频。此外,Decart AI还开发了专有的推理框架,以提供NVIDIA H100 Tensor Core GPU的峰值利用率,并支持Etched即将推出的Sohu芯片。
首款实时生成式AI开放世界模型
Decart是一个高效的AI平台,提供了在训练和推理大型生成模型方面的数量级改进。利用这些先进的能力,Decart能够训练基础的生成交互模型,并使每个人都能在实时中访问。Decart的OASIS模型是一个实时生成的AI开放世界模型,代表了实时视频生成的未来。该平台还提供了对1000+ NVIDIA H100 Tensor Core GPU集群进行训练或推理的能力,为AI视频生成领域带来了突破性进展。
大规模视频生成的自回归扩散模型
MarDini是Meta AI Research推出的一款视频扩散模型,它将掩码自回归(MAR)的优势整合到统一的扩散模型(DM)框架中。该模型能够根据任意数量的掩码帧在任意帧位置进行视频生成,支持视频插值、图像到视频生成以及视频扩展等多种视频生成任务。MarDini的设计高效,将大部分计算资源分配给低分辨率规划模型,使得在大规模上进行空间-时间注意力成为可能。MarDini在视频插值方面树立了新的标杆,并且在几次推理步骤内,就能高效生成与更昂贵的高级图像到视频模型相媲美的视频。
视频扩散模型加速工具,无需训练即可生成高质量视频内容。
FasterCache是一种创新的无需训练的策略,旨在加速视频扩散模型的推理过程,并生成高质量的视频内容。这一技术的重要性在于它能够显著提高视频生成的效率,同时保持或提升内容的质量,这对于需要快速生成视频内容的行业来说是非常有价值的。FasterCache由来自香港大学、南洋理工大学和上海人工智能实验室的研究人员共同开发,项目页面提供了更多的视觉结果和详细信息。产品目前免费提供,主要面向视频内容生成、AI研究和开发等领域。
Mochi视频生成器的ComfyUI包装节点
ComfyUI-MochiWrapper是一个用于Mochi视频生成器的包装节点,它允许用户通过ComfyUI界面与Mochi模型进行交互。这个项目主要优点是能够利用Mochi模型生成视频内容,并且通过ComfyUI简化了操作流程。它是基于Python开发的,并且完全开源,允许开发者自由地使用和修改。目前该项目还处于积极开发中,已经有一些基本功能,但还没有正式发布版本。
Genmo 的视频生成模型,具有高保真运动和强提示遵循性。
这是一个先进的视频生成模型,采用 AsymmDiT 架构,可免费试用。它能生成高保真视频,缩小了开源与闭源视频生成系统的差距。模型需要至少 4 个 H100 GPU 运行。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
从手机拍摄的平移视频中生成全景视频
VidPanos 是一个创新的视频处理技术,它能够将用户随意拍摄的平移视频转换成全景视频。这项技术通过空间时间外推的方式,生成与原视频长度相同的全景视频。VidPanos 利用生成视频模型,解决了在移动物体存在时,静态全景图无法捕捉场景动态的问题。它能够处理包括人、车辆、流水以及静态背景在内的各种野外场景,展现出强大的实用性和创新性。
视频生成评估基准测试
Movie Gen Bench是由Facebook Research发布的视频生成评估基准测试,旨在为未来在视频生成领域的研究提供公平且易于比较的标准。该基准测试包括Movie Gen Video Bench和Movie Gen Audio Bench两个部分,分别针对视频内容生成和音频生成进行评估。Movie Gen Bench的发布,对于推动视频生成技术的发展和评估具有重要意义,它能够帮助研究人员和开发者更好地理解和改进视频生成模型的性能。
高效视频生成建模的金字塔流匹配技术
Pyramid Flow 是一种高效的视频生成建模技术,它基于流匹配方法,通过自回归视频生成模型来实现。该技术主要优点是训练效率高,能够在开源数据集上以较低的GPU小时数进行训练,生成高质量的视频内容。Pyramid Flow 的背景信息包括由北京大学、快手科技和北京邮电大学共同研发,并且已经在多个平台上发布了相关的论文、代码和模型。
利用AI技术生成逼真的拥抱视频,让回忆温暖呈现。
AI Hug Video Generator是一个在线平台,使用先进的机器学习技术将静态照片转换成动态、逼真的拥抱视频。用户可以根据自己的珍贵照片创建个性化、充满情感的视频。该技术通过分析真实人类互动来创建真实感的数字拥抱,包括微妙的手势和情感。平台提供了用户友好的界面,无论是技术爱好者还是视频制作新手,都能轻松制作AI拥抱视频。此外,生成的视频是高清的,适合在任何平台上分享,确保在每个屏幕上都能呈现出色的效果。
重新定义视频创作
Hailuo AI Video Generator 是一款利用人工智能技术,根据文本提示自动生成视频内容的工具。它通过深度学习算法,将用户的文字描述转化为视觉图像,极大地简化了视频制作流程,提高了创作效率。该产品适用于需要快速生成视频内容的个人和企业,特别是在广告、社交媒体内容制作和电影预览等领域。
使用文本生成定制视频和声音
Meta Movie Gen 是一个先进的媒体基础AI模型,它允许用户通过简单的文本输入来生成定制的视频和声音,编辑现有视频或将个人图像转换成独特的视频。这项技术代表了AI在内容创造方面的最新突破,为内容创作者提供了前所未有的创作自由度和效率。
数字人模型,支持生成普通话视频
JoyHallo是一个数字人模型,专为普通话视频生成而设计。它通过收集来自京东健康国际有限公司员工的29小时普通话视频,创建了jdh-Hallo数据集。该数据集覆盖了不同年龄和说话风格,包括对话和专业医疗话题。JoyHallo模型采用中国wav2vec2模型进行音频特征嵌入,并提出了一种半解耦结构来捕捉唇部、表情和姿态特征之间的相互关系,提高了信息利用效率,并加快了推理速度14.3%。此外,JoyHallo在生成英语视频方面也表现出色,展现了卓越的跨语言生成能力。
下一代多模态智能模型
Emu3是一套最新的多模态模型,仅通过下一个token预测进行训练,能够处理图像、文本和视频。它在生成和感知任务上超越了多个特定任务的旗舰模型,并且不需要扩散或组合架构。Emu3通过将多模态序列统一到一个单一的transformer模型中,简化了复杂的多模态模型设计,展示了在训练和推理过程中扩展的巨大潜力。
集成空间编织注意力,提升扩散模型的高保真条件
HelloMeme是一个集成了空间编织注意力的扩散模型,旨在将高保真和丰富的条件嵌入到图像生成过程中。该技术通过提取驱动视频中的每一帧特征,并将其作为输入到HMControlModule,从而生成视频。通过进一步优化Animatediff模块,提高了生成视频的连续性和保真度。此外,HelloMeme还支持通过ARKit面部混合形状控制生成的面部表情,以及基于SD1.5的Lora或Checkpoint,实现了框架的热插拔适配器,不会影响T2I模型的泛化能力。
利用扩散变换器生成高质量的3D资产。
3DTopia-XL 是一个基于扩散变换器(DiT)构建的高质量3D资产生成技术,使用一种新颖的3D表示方法 PrimX。该技术能够将3D形状、纹理和材质编码到一个紧凑的N x D张量中,每个标记是一个体积原语,锚定在形状表面上,用体素化载荷编码符号距离场(SDF)、RGB和材质。这一过程仅需5秒即可从文本/图像输入生成3D PBR资产,适用于图形管道。
为ComfyUI提供Luma AI API的自定义节点。
ComfyUI-LumaAI-API是一个为ComfyUI设计的插件,它允许用户直接在ComfyUI中使用Luma AI API。Luma AI API基于Dream Machine视频生成模型,由Luma开发。该插件通过提供多种节点,如文本到视频、图像到视频、视频预览等,极大地丰富了视频生成的可能性,为视频创作者和开发者提供了便捷的工具。
© 2024 AIbase 备案号:闽ICP备08105208号-14