需求人群:
"目标受众为视频制作者、内容创作者和研究人员,他们需要生成具有多个提示和动态场景的视频内容。DiTCtrl适合他们,因为它提供了一种无需复杂训练过程即可生成高质量、连贯视频内容的方法,同时还能进行视频编辑和长视频生成,极大地提高了视频制作的效率和灵活性。"
使用场景示例:
生成一个关于‘一只猫看着一只黑色的老鼠’的视频,展示不同提示间的平滑过渡。
通过DiTCtrl生成一个长视频,内容为‘海洋中的鱼’,展示视频的连贯性和动态效果。
使用DiTCtrl进行视频编辑,将视频中的‘白色SUV’替换为‘红色跑车’,同时保持视频的原始构图。
产品特色:
• 无需训练的多提示视频生成:DiTCtrl能够在无需额外训练的情况下,根据多个连续提示生成视频。
• 平滑过渡和一致性:视频生成过程中实现了对象运动的连贯性和场景之间的平滑过渡。
• 多模态扩散变换器架构:基于MM-DiT架构,DiTCtrl展现了与UNet类似的自注意力机制,并增强了时间建模能力。
• 精确的语义控制:通过注意力机制的分析,DiTCtrl能够实现不同提示间的精确语义控制。
• 视频编辑功能:DiTCtrl可以应用于视频编辑任务,如文字替换和视频重权。
• 长视频生成:DiTCtrl能够通过设置相同的连续提示,自然地工作在单提示长视频生成上。
• 电影风格的过渡效果:DiTCtrl能够展示电影风格的过渡效果,如男孩骑行序列的描绘。
使用教程:
1. 准备多个连续的视频提示,作为视频生成的输入。
2. 使用DiTCtrl模型,将这些提示输入模型中。
3. 模型将分析每个提示的语义内容,并在内部进行注意力机制的计算。
4. 模型生成视频的初始潜在表示,包括多个提示的视频内容。
5. 通过模型的去噪过程,将全注意力转换为遮罩引导的KV共享策略,以查询源视频中的视频内容。
6. 根据修改后的目标提示,合成内容一致的视频。
7. 观察生成的视频,检查过渡的平滑性和对象运动的连贯性。
8. 如有需要,可以对生成的视频进行进一步的视频编辑,如文字替换或视频重权。
浏览量:25
探索多模态扩散变换器中的注意力控制,实现无需调优的多提示长视频生成
DiTCtrl是一种基于多模态扩散变换器(MM-DiT)架构的视频生成模型,它专注于无需额外训练即可生成具有多个连续提示的连贯场景视频。该模型通过分析MM-DiT的注意力机制,实现了在不同提示间精确的语义控制和注意力共享,从而生成具有平滑过渡和一致对象运动的视频。DiTCtrl的主要优点包括无需训练、能够处理多提示视频生成任务,并能展示电影风格的过渡效果。此外,DiTCtrl还提供了一个新基准MPVBench,专门用于评估多提示视频生成的性能。
视频生成的轨迹导向扩散变换器
Tora是一种基于扩散变换器(DiT)的视频生成模型,它通过集成文本、视觉和轨迹条件,实现了对视频内容动态的精确控制。Tora的设计充分利用了DiT的可扩展性,允许在不同的持续时间、纵横比和分辨率下生成高质量的视频内容。该模型在运动保真度和物理世界运动模拟方面表现出色,为视频内容创作提供了新的可能性。
利用扩散变换器生成高质量的3D资产。
3DTopia-XL 是一个基于扩散变换器(DiT)构建的高质量3D资产生成技术,使用一种新颖的3D表示方法 PrimX。该技术能够将3D形状、纹理和材质编码到一个紧凑的N x D张量中,每个标记是一个体积原语,锚定在形状表面上,用体素化载荷编码符号距离场(SDF)、RGB和材质。这一过程仅需5秒即可从文本/图像输入生成3D PBR资产,适用于图形管道。
SeedVR: 一种用于通用视频修复的扩散变换器模型
SeedVR 是一种创新的扩散变换器模型,专门用于处理真实世界中的视频修复任务。该模型通过其独特的移位窗口注意力机制,能够高效地处理任意长度和分辨率的视频序列。SeedVR 的设计使其在生成能力和采样效率方面都取得了显著的提升,相较于传统的扩散模型,它在合成和真实世界的基准测试中均表现出色。此外,SeedVR 还结合了因果视频自编码器、混合图像和视频训练以及渐进式训练等现代实践,进一步提高了其在视频修复领域的竞争力。作为一种前沿的视频修复技术,SeedVR 为视频内容创作者和后期制作人员提供了一种强大的工具,能够显著提升视频质量,尤其是在处理低质量或损坏的视频素材时。
基于孪生多模态扩散变换器的创意布局到图像生成技术
CreatiLayout是一种创新的布局到图像生成技术,利用孪生多模态扩散变换器(Siamese Multimodal Diffusion Transformer)来实现高质量和细粒度可控的图像生成。该技术能够精确渲染复杂的属性,如颜色、纹理、形状、数量和文本,适用于需要精确布局和图像生成的应用场景。其主要优点包括高效的布局引导集成、强大的图像生成能力和大规模数据集的支持。CreatiLayout由复旦大学和字节跳动公司联合开发,旨在推动图像生成技术在创意设计领域的应用。
MakeAnything 是一个用于多领域程序化序列生成的扩散变换器模型。
MakeAnything 是一个基于扩散变换器的模型,专注于多领域程序化序列生成。该技术通过结合先进的扩散模型和变换器架构,能够生成高质量的、逐步的创作序列,如绘画、雕塑、图标设计等。其主要优点在于能够处理多种领域的生成任务,并且可以通过少量样本快速适应新领域。该模型由新加坡国立大学 Show Lab 团队开发,目前以开源形式提供,旨在推动多领域生成技术的发展。
基于文本生成图像的多模态扩散变换器模型
Stable Diffusion 3.5 Medium是一个基于文本到图像的生成模型,由Stability AI开发,具有改进的图像质量、排版、复杂提示理解和资源效率。该模型使用了三个固定的预训练文本编码器,通过QK-规范化提高训练稳定性,并在前12个变换层中引入双注意力块。它在多分辨率图像生成、一致性和各种文本到图像任务的适应性方面表现出色。
一种用于扩散变换器的上下文LoRA微调技术
In-Context LoRA是一种用于扩散变换器(DiTs)的微调技术,它通过结合图像而非仅仅文本,实现了在保持任务无关性的同时,对特定任务进行微调。这种技术的主要优点是能够在小数据集上进行有效的微调,而不需要对原始DiT模型进行任何修改,只需改变训练数据即可。In-Context LoRA通过联合描述多张图像并应用任务特定的LoRA微调,生成高保真度的图像集合,更好地符合提示要求。该技术对于图像生成领域具有重要意义,因为它提供了一种强大的工具,可以在不牺牲任务无关性的前提下,为特定任务生成高质量的图像。
InstantCharacter 是一种基于扩散变换器的角色个性化框架。
InstantCharacter 是一个基于扩散变换器的角色个性化框架,旨在克服现有学习基础自定义方法的局限性。该框架的主要优点在于开放域个性化、高保真结果以及有效的角色特征处理能力,适合各种角色外观、姿势和风格的生成。该框架利用一个包含千万级样本的大规模数据集进行训练,以实现角色一致性和文本可编辑性的同时优化。该技术为角色驱动的图像生成设定了新的基准。
一种基于扩散变换器网络的高动态、逼真肖像图像动画技术。
Hallo3是一种用于肖像图像动画的技术,它利用预训练的基于变换器的视频生成模型,能够生成高度动态和逼真的视频,有效解决了非正面视角、动态对象渲染和沉浸式背景生成等挑战。该技术由复旦大学和百度公司的研究人员共同开发,具有强大的泛化能力,为肖像动画领域带来了新的突破。
统一多模态视频生成系统
UniVG是一款统一多模态视频生成系统,能够处理多种视频生成任务,包括文本和图像模态。通过引入多条件交叉注意力和偏置高斯噪声,实现了高自由度和低自由度视频生成。在公共学术基准MSR-VTT上实现了最低的Fr'echet视频距离(FVD),超越了当前开源方法在人类评估上的表现,并与当前闭源方法Gen2不相上下。
多模态驱动的定制视频生成架构。
HunyuanCustom 是一个多模态定制视频生成框架,旨在根据用户定义的条件生成特定主题的视频。该技术在身份一致性和多种输入模式的支持上表现出色,能够处理文本、图像、音频和视频输入,适合虚拟人广告、视频编辑等多种应用场景。
PIXART-Σ是一个用于4K文本到图像生成的扩散变换器模型(Diffusion Transformer)
PIXART-Σ是一个直接生成4K分辨率图像的扩散变换器模型,相较于前身PixArt-α,它提供了更高的图像保真度和与文本提示更好的对齐。PIXART-Σ的关键特性包括高效的训练过程,它通过结合更高质量的数据,从“较弱”的基线模型进化到“更强”的模型,这一过程被称为“弱到强训练”。PIXART-Σ的改进包括使用更高质量的训练数据和高效的标记压缩。
Qihoo-T2X,一款针对文本到任意任务的高效扩散变换器模型。
Qihoo-T2X是由360CVGroup开发的一个开源项目,它代表了一种创新的文本到任意任务(Text-to-Any)的扩散变换器(DiT)架构范式。该项目旨在通过代理令牌技术,提高文本到任意任务的处理效率。Qihoo-T2X项目是一个正在进行中的项目,其团队承诺将持续优化和增强其功能。
在视频扩散变换器中合成任何内容的框架。
SkyReels-A2 是一个基于视频扩散变换器的框架,允许用户合成和生成视频内容。该模型通过利用深度学习技术,提供了灵活的创作能力,适合多种视频生成应用,尤其是在动画和特效制作方面。该产品的优点在于其开源特性和高效的模型性能,适合研究人员和开发者使用,且目前不收取费用。
多模态理解和生成的统一模型
Janus是一个创新的自回归框架,它通过分离视觉编码来实现多模态理解和生成的统一。这种解耦不仅缓解了视觉编码器在理解和生成中的角色冲突,还增强了框架的灵活性。Janus超越了以往的统一模型,并与特定任务的模型性能相匹配或超越。Janus的简单性、高灵活性和有效性使其成为下一代统一多模态模型的强有力候选者。
先进的文本到视频生成模型
Allegro是由Rhymes AI开发的高级文本到视频模型,它能够将简单的文本提示转换成高质量的短视频片段。Allegro的开源特性使其成为创作者、开发者和AI视频生成领域研究人员的强大工具。Allegro的主要优点包括开源、内容创作多样化、高质量输出以及模型体积小且高效。它支持多种精度(FP32、BF16、FP16),在BF16模式下,GPU内存使用量为9.3 GB,上下文长度为79.2k,相当于88帧。Allegro的技术核心包括大规模视频数据处理、视频压缩成视觉令牌以及扩展视频扩散变换器。
创新的AI视频生成器,快速实现创意视频。
Luma AI的Dream Machine是一款AI视频生成器,它利用先进的AI技术,将用户的想法转化为高质量、逼真的视频。它支持从文字描述或图片开始生成视频,具有高度的可扩展性、快速生成能力和实时访问功能。产品界面用户友好,适合专业人士和创意爱好者使用。Luma AI的Dream Machine不断更新,以保持技术领先,为用户提供持续改进的视频生成体验。
统一多模态理解和生成的单一变换器
Show-o是一个用于多模态理解和生成的单一变换器模型,它能够处理图像字幕、视觉问答、文本到图像生成、文本引导的修复和扩展以及混合模态生成。该模型由新加坡国立大学的Show Lab和字节跳动共同开发,采用最新的深度学习技术,能够理解和生成多种模态的数据,是人工智能领域的一大突破。
Freepik AI 视频生成器,基于人工智能技术快速生成高质量视频内容。
Freepik AI 视频生成器是一款基于人工智能技术的在线工具,能够根据用户输入的初始图像或描述快速生成视频。该技术利用先进的 AI 算法,实现视频内容的自动化生成,极大地提高了视频创作的效率。产品定位为创意设计人员和视频制作者提供快速、高效的视频生成解决方案,帮助用户节省时间和精力。目前该工具处于 Beta 测试阶段,用户可以免费试用其功能。
大规模视频生成扩散模型
Sora是一个基于大规模训练的文本控制视频生成扩散模型。它能够生成长达1分钟的高清视频,涵盖广泛的视觉数据类型和分辨率。Sora通过在视频和图像的压缩潜在空间中训练,将其分解为时空位置补丁,实现了可扩展的视频生成。Sora还展现出一些模拟物理世界和数字世界的能力,如三维一致性和交互,揭示了继续扩大视频生成模型规模来发展高能力模拟器的前景。
基于预训练的纯视觉变换器提升图像抠图
ViTMatte是一个基于预训练纯视觉变换器(Plain Vision Transformers, ViTs)的图像抠图系统。它利用混合注意力机制和卷积颈部来优化性能与计算之间的平衡,并引入了细节捕获模块以补充抠图所需的细节信息。ViTMatte是首个通过简洁的适配释放ViT在图像抠图领域潜力的工作,继承了ViT在预训练策略、简洁的架构设计和灵活的推理策略等方面的优势。在Composition-1k和Distinctions-646这两个最常用的图像抠图基准测试中,ViTMatte达到了最先进的性能,并以较大优势超越了先前的工作。
音频生成与自动字幕生成模型
GenAU是一个由Snap Research开发的音频生成模型,它通过AutoCap自动字幕生成模型和GenAu音频生成架构,显著提升了音频生成的质量。它在生成环境声音和效果方面具有挑战性,特别是在数据稀缺和字幕质量不足的情况下。GenAU模型能够生成高质量的音频,并且在音频合成领域具有很大的潜力。
通过文本生成高质量AI视频
Sora视频生成器是一个可以通过文本生成高质量AI视频的在线网站。用户只需要输入想要生成视频的文本描述,它就可以使用OpenAI的Sora AI模型,转换成逼真的视频。网站还提供了丰富的视频样例,详细的使用指南和定价方案等。
新一代自回归框架,统一多模态理解和生成
Janus是一个创新的自回归框架,通过将视觉编码分离成不同的路径,同时利用单一的、统一的变换器架构进行处理,解决了以往方法的局限性。这种解耦不仅减轻了视觉编码器在理解和生成中的角色冲突,还增强了框架的灵活性。Janus的性能超越了以往的统一模型,并且达到了或超过了特定任务模型的性能。Janus的简单性、高灵活性和有效性使其成为下一代统一多模态模型的强有力候选。
大规模参数扩散变换器模型
DiT-MoE是一个使用PyTorch实现的扩散变换器模型,能够扩展到160亿参数,与密集网络竞争的同时展现出高度优化的推理能力。它代表了深度学习领域在处理大规模数据集时的前沿技术,具有重要的研究和应用价值。
定制化漫画生成模型,连接多模态LLMs和扩散模型。
DiffSensei是一个结合了多模态大型语言模型(LLMs)和扩散模型的定制化漫画生成模型。它能够根据用户提供的文本提示和角色图像,生成可控制的黑白漫画面板,并具有灵活的角色适应性。这项技术的重要性在于它将自然语言处理与图像生成相结合,为漫画创作和个性化内容生成提供了新的可能性。DiffSensei模型以其高质量的图像生成、多样化的应用场景以及对资源的高效利用而受到关注。目前,该模型在GitHub上公开,可以免费下载使用,但具体的使用可能需要一定的计算资源。
基于 AI 技术生成视频内容的智能服务。
清影 AI 视频生成服务是一个创新的人工智能平台,旨在通过智能算法生成高质量的视频内容。该服务适合各种行业用户,能够快速便捷地生成富有创意的视觉内容。无论是商业广告、教育课程还是娱乐视频,清影 AI 都能提供优质的解决方案。该产品依托于先进的 GLM 大模型,确保生成内容的准确性与丰富性,同时满足用户个性化需求。提供免费试用,鼓励用户探索 AI 视频创作的无限可能。
© 2025 AIbase 备案号:闽ICP备08105208号-14