TransPixar: 推进带有透明度的文本到视频生成技术
TransPixar 是一种先进的文本到视频生成模型,能够生成包含透明度通道的 RGBA 视频。该技术通过结合扩散变换器(DiT)架构和 LoRA 基于微调的方法,实现了 RGB 和 Alpha 通道的高一致性生成。TransPixar 在视觉效果(VFX)和互动内容创作领域具有重要应用价值,能够为娱乐、广告和教育等行业提供多样化的内容生成解决方案。其主要优点包括高效的模型扩展性、强大的生成能力和对有限训练数据的优化处理能力。
高保真文本引导的音乐生成与编辑模型
MelodyFlow是一个基于文本控制的高保真音乐生成和编辑模型,它使用连续潜在表示序列,避免了离散表示的信息丢失问题。该模型基于扩散变换器架构,经过流匹配目标训练,能够生成和编辑多样化的高质量立体声样本,且具有文本描述的简单性。MelodyFlow还探索了一种新的正则化潜在反转方法,用于零样本测试时的文本引导编辑,并展示了其在多种音乐编辑提示中的优越性能。该模型在客观和主观指标上进行了评估,证明了其在标准文本到音乐基准测试中的质量与效率上与评估基线相当,并且在音乐编辑方面超越了以往的最先进技术。
一种用于扩散变换器的上下文LoRA微调技术
In-Context LoRA是一种用于扩散变换器(DiTs)的微调技术,它通过结合图像而非仅仅文本,实现了在保持任务无关性的同时,对特定任务进行微调。这种技术的主要优点是能够在小数据集上进行有效的微调,而不需要对原始DiT模型进行任何修改,只需改变训练数据即可。In-Context LoRA通过联合描述多张图像并应用任务特定的LoRA微调,生成高保真度的图像集合,更好地符合提示要求。该技术对于图像生成领域具有重要意义,因为它提供了一种强大的工具,可以在不牺牲任务无关性的前提下,为特定任务生成高质量的图像。
利用扩散变换器生成高质量的3D资产。
3DTopia-XL 是一个基于扩散变换器(DiT)构建的高质量3D资产生成技术,使用一种新颖的3D表示方法 PrimX。该技术能够将3D形状、纹理和材质编码到一个紧凑的N x D张量中,每个标记是一个体积原语,锚定在形状表面上,用体素化载荷编码符号距离场(SDF)、RGB和材质。这一过程仅需5秒即可从文本/图像输入生成3D PBR资产,适用于图形管道。
Qihoo-T2X,一款针对文本到任意任务的高效扩散变换器模型。
Qihoo-T2X是由360CVGroup开发的一个开源项目,它代表了一种创新的文本到任意任务(Text-to-Any)的扩散变换器(DiT)架构范式。该项目旨在通过代理令牌技术,提高文本到任意任务的处理效率。Qihoo-T2X项目是一个正在进行中的项目,其团队承诺将持续优化和增强其功能。
© 2025 AIbase 备案号:闽ICP备08105208号-14