需求人群:
"该产品适用于需要高效处理图像和视频内容的企业和个人,如金融科技、内容创作、教育、科研等领域。它能够帮助用户快速提取图像和视频中的关键信息,提高工作效率,尤其适合需要处理大量视觉数据的场景。"
使用场景示例:
在金融领域,Qwen2.5-VL 可以用于解析和提取发票、票据等文档中的关键信息,提高财务处理效率。
在教育领域,该模型可以帮助教师快速生成教学材料,如解析教材中的图表并生成讲解文本。
在内容创作领域,Qwen2.5-VL 可以用于视频内容的自动标注和摘要生成,帮助创作者快速整理视频素材。
产品特色:
强大的视觉识别能力,能够识别多种类型的图像内容。
支持长视频理解,能够处理超过1小时的视频并定位关键事件。
提供视觉代理功能,能够直接作为视觉代理进行推理和工具调用。
支持多种格式的视觉定位,能够生成稳定的坐标和属性输出。
能够生成结构化输出,适用于金融、商业等领域。
支持多语言和多方向的文本识别与理解。
独特的 QwenVL HTML 格式,用于解析复杂文档布局。
使用教程:
1. 访问 [Qwen Chat](https://chat.qwenlm.ai) 并选择 Qwen2.5-VL-72B-Instruct 模型。
2. 上传需要处理的图像或视频文件。
3. 根据需求选择相应的功能,如图像识别、视频理解、文档解析等。
4. 模型将自动处理并生成结果,用户可以根据提示查看和下载输出内容。
5. 对于复杂任务,可以利用模型的工具调用功能,动态获取所需信息。
浏览量:308
最新流量情况
月访问量
1307.79k
平均访问时长
00:00:53
每次访问页数
1.66
跳出率
58.51%
流量来源
直接访问
38.66%
自然搜索
43.06%
邮件
0.07%
外链引荐
14.53%
社交媒体
3.45%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
29.74%
印度
4.41%
俄罗斯
2.64%
美国
17.61%
多模态大型语言模型,支持图像和文本理解
InternVL 2.5是一系列先进的多模态大型语言模型(MLLM),它在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,保持了其核心模型架构。该模型集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5支持多图像和视频数据,通过动态高分辨率训练方法,增强了模型处理多模态数据的能力。
多模态大型语言模型,理解长图像序列。
mPLUG-Owl3是一个多模态大型语言模型,专注于长图像序列的理解。它能够从检索系统中学习知识,与用户进行图文交替对话,并观看长视频,记住其细节。模型的源代码和权重已在HuggingFace上发布,适用于视觉问答、多模态基准测试和视频基准测试等场景。
VideoLLaMA3是前沿的多模态基础模型,专注于图像和视频理解。
VideoLLaMA3是由DAMO-NLP-SG团队开发的前沿多模态基础模型,专注于图像和视频理解。该模型基于Qwen2.5架构,结合了先进的视觉编码器(如SigLip)和强大的语言生成能力,能够处理复杂的视觉和语言任务。其主要优点包括高效的时空建模能力、强大的多模态融合能力以及对大规模数据的优化训练。该模型适用于需要深度视频理解的应用场景,如视频内容分析、视觉问答等,具有广泛的研究和商业应用潜力。
智能图像识别API
Monster API是一个智能图像识别API,可以帮助开发者快速实现图像识别功能。它提供了多种功能,包括物体识别、人脸识别、文字识别等。优势是准确率高、响应速度快、易于集成。价格根据使用情况计费,具体请查看官方网站。Monster API的定位是为开发者提供强大的图像识别能力,帮助他们构建智能应用。
高性能多模态语言模型,适用于图像和视频理解。
MiniCPM-V 2.6是一个基于8亿参数的多模态大型语言模型,它在单图像理解、多图像理解和视频理解等多个领域展现出领先性能。该模型在OpenCompass等多个流行基准测试中取得了平均65.2分的高分,超越了广泛使用的专有模型。它还具备强大的OCR能力,支持多语言,并在效率上表现出色,能够在iPad等终端设备上实现实时视频理解。
前沿级多模态AI模型,提供图像和文本理解
Pixtral Large是Mistral AI推出的一款前沿级多模态AI模型,基于Mistral Large 2构建,具备领先的图像理解能力,能够理解文档、图表和自然图像,同时保持Mistral Large 2在文本理解方面的领先地位。该模型在多模态基准测试中表现优异,特别是在MathVista、ChartQA和DocVQA等测试中超越了其他模型。Pixtral Large在MM-MT-Bench测试中也展现了竞争力,超越了包括Claude-3.5 Sonnet在内的多个模型。该模型适用于研究和教育用途的Mistral Research License (MRL),以及适用于商业用途的Mistral Commercial License。
大型多模态模型,处理多图像、视频和3D数据。
LLaVA-NeXT是一个大型多模态模型,它通过统一的交错数据格式处理多图像、视频、3D和单图像数据,展示了在不同视觉数据模态上的联合训练能力。该模型在多图像基准测试中取得了领先的结果,并在不同场景中通过适当的数据混合提高了之前单独任务的性能或保持了性能。
多模态大型模型,处理文本、图像和视频数据
Valley-Eagle-7B是由字节跳动开发的多模态大型模型,旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,并在OpenCompass测试中展现出与同规模模型相比的卓越性能。Valley-Eagle-7B结合了LargeMLP和ConvAdapter构建投影器,并引入了VisionEncoder,以增强模型在极端场景下的性能。
大型多模态模型中视频理解的探索
Apollo是一个专注于视频理解的先进大型多模态模型家族。它通过系统性地探索视频-LMMs的设计空间,揭示了驱动性能的关键因素,提供了优化模型性能的实用见解。Apollo通过发现'Scaling Consistency',使得在较小模型和数据集上的设计决策能够可靠地转移到更大的模型上,大幅降低计算成本。Apollo的主要优点包括高效的设计决策、优化的训练计划和数据混合,以及一个新型的基准测试ApolloBench,用于高效评估。
Qwen2.5-VL 是一款强大的视觉语言模型,能够理解图像和视频内容并生成相应文本。
Qwen2.5-VL 是 Qwen 团队推出的最新旗舰视觉语言模型,是视觉语言模型领域的重要进步。它不仅能够识别常见物体,还能分析图像中的文字、图表、图标等复杂内容,并支持对长视频的理解和事件定位。该模型在多个基准测试中表现出色,尤其在文档理解和视觉代理任务中具有显著优势,展现了强大的视觉理解和推理能力。其主要优点包括高效的多模态理解、强大的长视频处理能力以及灵活的工具调用能力,适用于多种应用场景。
智能图像识别服务
云识别是一款提供智能图像识别服务的产品。通过使用先进的深度学习算法,云识别能够实时准确地识别和分类图像中的物体、场景和文字。优势包括高准确率、快速响应、支持多种图像格式和多平台集成。定价根据使用量和功能定制。主要功能包括图像分类、物体检测、场景识别和文字识别等。适用于各种图像处理场景,如图像搜索、内容过滤、自动驾驶、安防监控等。
AI图像识别购物助手
HopShop是一款基于AI图像识别的购物助手,用户可以通过上传图片或截图来搜索相似的服装商品,获取最佳价格并节省时间。同时,商家也可以通过HopShop增加销售量并提升转化率。
先进的多模态模型,支持图像和文本理解。
Phi-3.5-vision是微软开发的轻量级、最新一代的多模态模型,基于包括合成数据和经过筛选的公开可用网站在内的数据集构建,专注于文本和视觉的高质量、密集推理数据。该模型属于Phi-3模型家族,经过严格的增强过程,结合了监督微调和直接偏好优化,以确保精确的指令遵循和强大的安全措施。
面向长期视频理解的大规模多模态模型
MA-LMM是一种基于大语言模型的大规模多模态模型,主要针对长期视频理解进行设计。它采用在线处理视频的方式,并使用记忆库存储过去的视频信息,从而可以在不超过语言模型上下文长度限制或GPU内存限制的情况下,参考历史视频内容进行长期分析。MA-LMM可以无缝集成到当前的多模态语言模型中,并在长视频理解、视频问答和视频字幕等任务上取得了领先的性能。
支持同时理解和生成图像的多模态大型语言模型
Mini-Gemini是一个多模态视觉语言模型,支持从2B到34B的系列密集和MoE大型语言模型,同时具备图像理解、推理和生成能力。它基于LLaVA构建,利用双视觉编码器提供低分辨率视觉嵌入和高分辨率候选区域,采用补丁信息挖掘在高分辨率区域和低分辨率视觉查询之间进行补丁级挖掘,将文本与图像融合用于理解和生成任务。支持包括COCO、GQA、OCR-VQA、VisualGenome等多个视觉理解基准测试。
多模态AI模型,图像理解与生成兼备
Mini-Gemini是由香港中文大学终身教授贾佳亚团队开发的多模态模型,具备精准的图像理解能力和高质量的训练数据。该模型结合图像推理和生成,提供不同规模的版本,性能与GPT-4和DALLE3相媲美。Mini-Gemini采用Gemini的视觉双分支信息挖掘方法和SDXL技术,通过卷积网络编码图像并利用Attention机制挖掘信息,同时结合LLM生成文本链接两个模型。
基于 Transformer 的图像识别模型
Google Vision Transformer 是一款基于 Transformer 编码器的图像识别模型,使用大规模图像数据进行预训练,可用于图像分类等任务。该模型在 ImageNet-21k 数据集上进行了预训练,并在 ImageNet 数据集上进行了微调,具备良好的图像特征提取能力。该模型通过将图像切分为固定大小的图像块,并线性嵌入这些图像块来处理图像数据。同时,模型在输入序列前添加了位置编码,以便在 Transformer 编码器中处理序列数据。用户可以通过在预训练的编码器之上添加线性层进行图像分类等任务。Google Vision Transformer 的优势在于其强大的图像特征学习能力和广泛的适用性。该模型免费提供使用。
AI图像识别,释放人工智能的非凡功能
AI VISION 是一款突破性的图像识别应用程序,利用先进的图像识别技术,能够识别图像并为您的问题提供即时答案。具有无与伦比的准确性,无论您是好奇的探索者、专注的学生还是需要快速准确信息的专业人士,AI VISION 都能满足您的需求。它还提供实时解答功能,无缝的用户体验和无限的可能性。AI VISION 适用于教育研究、旅行见解或满足好奇心,让您在每次遇到图像时做出更明智、更明智的决策。
端侧全模态理解开源模型
Megrez-3B-Omni是由无问芯穹研发的端侧全模态理解模型,基于大语言模型Megrez-3B-Instruct扩展,具备图片、文本、音频三种模态数据的理解分析能力。该模型在图像理解、语言理解、语音理解方面均取得最优精度,支持中英文语音输入及多轮对话,支持对输入图片的语音提问,根据语音指令直接响应文本,在多项基准任务上取得了领先的结果。
先进的多模态大型语言模型系列
InternVL 2.5是OpenGVLab推出的多模态大型语言模型系列,它在InternVL 2.0的基础上进行了显著的训练和测试策略增强,以及数据质量提升。该模型系列能够处理图像、文本和视频数据,具备多模态理解和生成的能力,是当前多模态人工智能领域的前沿产品。InternVL 2.5系列模型以其高性能和开源特性,为多模态任务提供了强大的支持。
智能视频识别和图像识别
Valossa AI是一款智能视频识别和图像识别产品。它能够帮助企业安全地管理和发展视频业务,通过分析和理解视频内容,生成元数据,提供自动预览、内容审核、广告匹配、面部分析等功能。Valossa AI可以广泛应用于视频推广、内容审核、智能广告、实时摄像系统等领域。
多模态嵌入模型,实现文本、图像和截图的无缝检索。
Voyage AI推出的voyage-multimodal-3是一款多模态嵌入模型,它能够将文本和图像(包括PDF、幻灯片、表格等的截图)进行向量化处理,并捕捉关键视觉特征,从而提高文档检索的准确性。这一技术的进步,对于知识库中包含视觉和文本的丰富信息的RAG和语义搜索具有重要意义。voyage-multimodal-3在多模态检索任务中平均提高了19.63%的检索准确率,相较于其他模型表现出色。
先进的开源多模态模型
Yi-VL-34B是 Yi Visual Language(Yi-VL)模型的开源版本,是一种多模态模型,能够理解和识别图像,并进行关于图像的多轮对话。Yi-VL 在最新的基准测试中表现出色,在 MMM 和 CMMMU 两个基准测试中均排名第一。
图像识别API,为您的图像提供标签、分类和颜色提取
Imagga图像识别API提供图像标签、分类、颜色提取等功能。它可以自动为您的图像分配标签,并根据图像内容进行自动分类。此外,它还可以生成精美的缩略图,并从图像中提取颜色信息。Imagga图像识别API适用于各种场景,包括图像搜索、内容审核、产品推荐等。它的定价根据使用情况而定,提供云端和本地部署两种选择。
© 2025 AIbase 备案号:闽ICP备08105208号-14