视频序列理解的GPU实现模型
PPLLaVA是一个高效的视频大型语言模型,它结合了细粒度视觉提示对齐、用户指令的卷积风格池化的视觉令牌压缩以及CLIP上下文扩展。该模型在VideoMME、MVBench、VideoChatGPT Bench和VideoQA Bench等数据集上建立了新的最先进结果,仅使用1024个视觉令牌,吞吐量提高了8倍。
长视频语言理解的时空自适应压缩模型
LongVU是一种创新的长视频语言理解模型,通过时空自适应压缩机制减少视频标记的数量,同时保留长视频中的视觉细节。这一技术的重要性在于它能够处理大量视频帧,且在有限的上下文长度内仅损失少量视觉信息,显著提升了长视频内容理解和分析的能力。LongVU在多种视频理解基准测试中均超越了现有方法,尤其是在理解长达一小时的视频任务上。此外,LongVU还能够有效地扩展到更小的模型尺寸,同时保持最先进的视频理解性能。
多模态原生混合专家模型
Aria是一个多模态原生混合专家模型,具有强大的多模态、语言和编码任务性能。它在视频和文档理解方面表现出色,支持长达64K的多模态输入,能够在10秒内描述一个256帧的视频。Aria模型的参数量为25.3B,能够在单个A100(80GB)GPU上使用bfloat16精度进行加载。Aria的开发背景是满足对多模态数据理解的需求,特别是在视频和文档处理方面。它是一个开源模型,旨在推动多模态人工智能的发展。
视频指令调优与合成数据研究
LLaVA-Video是一个专注于视频指令调优的大型多模态模型(LMMs),通过创建高质量的合成数据集LLaVA-Video-178K来解决从网络获取大量高质量原始数据的难题。该数据集包括详细的视频描述、开放式问答和多项选择问答等任务,旨在提高视频语言模型的理解和推理能力。LLaVA-Video模型在多个视频基准测试中表现出色,证明了其数据集的有效性。
腾讯QQ多媒体研究团队开发的轻量级灵活视频多语言模型
Video-CCAM 是腾讯QQ多媒体研究团队开发的一系列灵活的视频多语言模型(Video-MLLM),致力于提升视频-语言理解能力,特别适用于短视频和长视频的分析。它通过因果交叉注意力掩码(Causal Cross-Attention Masks)来实现这一目标。Video-CCAM 在多个基准测试中表现优异,特别是在 MVBench、VideoVista 和 MLVU 上。模型的源代码已经重写,以简化部署过程。
一款多功能大型视觉语言模型
InternLM-XComposer-2.5是一款支持长上下文输入和输出的多功能大型视觉语言模型。它在各种文本图像理解和创作应用中表现出色,实现了与GPT-4V相当的水平,但仅使用了7B的LLM后端。该模型通过24K交错图像文本上下文进行训练,能够无缝扩展到96K长上下文,通过RoPE外推。这种长上下文能力使其在需要广泛输入和输出上下文的任务中表现突出。此外,它还支持超高分辨率理解、细粒度视频理解、多轮多图像对话、网页制作以及撰写高质量图文文章等功能。
提升视频理解和生成的AI模型。
ShareGPT4Video系列旨在通过密集且精确的字幕来促进大型视频-语言模型(LVLMs)的视频理解以及文本到视频模型(T2VMs)的视频生成。该系列包括:1) ShareGPT4Video,40K GPT4V注释的密集视频字幕,通过精心设计的数据过滤和注释策略开发而成。2) ShareCaptioner-Video,一个高效且功能强大的任意视频字幕模型,由其注释的4.8M高质量美学视频。3) ShareGPT4Video-8B,一个简单但卓越的LVLM,其在三个先进的视频基准测试中达到了最佳性能。
大型视频-语言模型,提供视觉问答和视频字幕生成。
VideoLLaMA2-7B是由DAMO-NLP-SG团队开发的多模态大型语言模型,专注于视频内容的理解和生成。该模型在视觉问答和视频字幕生成方面具有显著的性能,能够处理复杂的视频内容,并生成准确、自然的语言描述。它在空间-时间建模和音频理解方面进行了优化,为视频内容的智能分析和处理提供了强大的支持。
长视频理解基准测试
LVBench是一个专门设计用于长视频理解的基准测试,旨在推动多模态大型语言模型在理解数小时长视频方面的能力,这对于长期决策制定、深入电影评论和讨论、现场体育解说等实际应用至关重要。
视频理解领域的先进空间-时间建模与音频理解模型。
VideoLLaMA 2 是一个针对视频理解任务优化的大规模语言模型,它通过先进的空间-时间建模和音频理解能力,提升了对视频内容的解析和理解。该模型在多选视频问答和视频字幕生成等任务上展现了卓越的性能。
一个多图像视觉语言模型,具有训练、推理和评估方案,可从云端部署到边缘设备(如Jetson Orin和笔记本电脑)。
VILA是一个预训练的视觉语言模型(VLM),它通过大规模的交错图像-文本数据进行预训练,从而实现视频理解和多图像理解能力。VILA通过AWQ 4bit量化和TinyChat框架在边缘设备上可部署。主要优点包括:1) 交错图像-文本数据对于提升性能至关重要;2) 在交错图像-文本预训练期间不冻结大型语言模型(LLM)可以促进上下文学习;3) 重新混合文本指令数据对于提升VLM和纯文本性能至关重要;4) 标记压缩可以扩展视频帧数。VILA展示了包括视频推理、上下文学习、视觉思维链和更好的世界知识等引人入胜的能力。
视频理解领域的新型状态空间模型,提供视频建模的多功能套件。
Video Mamba Suite 是一个用于视频理解的新型状态空间模型套件,旨在探索和评估Mamba在视频建模中的潜力。该套件包含14个模型/模块,覆盖12个视频理解任务,展示了在视频和视频-语言任务中的高效性能和优越性。
面向长期视频理解的大规模多模态模型
MA-LMM是一种基于大语言模型的大规模多模态模型,主要针对长期视频理解进行设计。它采用在线处理视频的方式,并使用记忆库存储过去的视频信息,从而可以在不超过语言模型上下文长度限制或GPU内存限制的情况下,参考历史视频内容进行长期分析。MA-LMM可以无缝集成到当前的多模态语言模型中,并在长视频理解、视频问答和视频字幕等任务上取得了领先的性能。
© 2024 AIbase 备案号:闽ICP备08105208号-14