需求人群:
"目标受众为需要处理和分析大量视觉数据的研究人员和开发者,特别是在图像识别、视频分析和3D建模领域。该技术能够帮助他们更高效地完成复杂的视觉任务,提高研究和开发的效率。"
使用场景示例:
研究人员使用LLaVA-NeXT模型进行多图像基准测试,提高了分类任务的准确率。
开发者利用该模型从视频数据中提取关键帧,用于内容摘要和高亮显示。
教育机构采用LLaVA-NeXT进行3D建模教学,帮助学生更好地理解空间结构。
产品特色:
多图像编码:模型能够基于多图像学习编写代码。
多图像与视频任务转换:模型能够识别两个视频之间的差异,并编写关于视频的Twitter帖子。
真实世界应用:模型能够从多图像中总结和检索信息,识别绘画风格和不同类别,以及创建图像编辑提示。
交错视觉指令调整:使用交错格式统一不同任务的数据输入,涵盖多种具有挑战性的真实世界任务。
多帧(视频)场景:通过将视频数据采样成多帧来保留跨多图像序列的时间线索。
多视图(3D)场景:通过多视图图像从不同角度表示3D环境,进行3D感知。
单图像场景:通过AnyRes设计将单图像分割成多个小块,与交错格式兼容。
使用教程:
步骤1:访问LLaVA-NeXT模型的网页。
步骤2:了解模型的基本功能和应用场景。
步骤3:根据需求选择合适的数据输入格式,如多图像、视频或3D场景。
步骤4:上传或输入需要处理的视觉数据。
步骤5:根据任务类型,配置模型参数,如编码、任务转换或真实世界应用。
步骤6:运行模型,等待处理结果。
步骤7:分析模型输出,根据结果进行后续的研究或开发工作。
浏览量:157
最新流量情况
月访问量
65.04k
平均访问时长
00:00:26
每次访问页数
1.35
跳出率
51.34%
流量来源
直接访问
40.74%
自然搜索
45.90%
邮件
0.09%
外链引荐
10.64%
社交媒体
2.03%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
瑞士
5.55%
中国
10.32%
印度
7.95%
韩国
14.72%
美国
19.09%
大型多模态模型,处理多图像、视频和3D数据。
LLaVA-NeXT是一个大型多模态模型,它通过统一的交错数据格式处理多图像、视频、3D和单图像数据,展示了在不同视觉数据模态上的联合训练能力。该模型在多图像基准测试中取得了领先的结果,并在不同场景中通过适当的数据混合提高了之前单独任务的性能或保持了性能。
多模态大型模型,处理文本、图像和视频数据
Valley-Eagle-7B是由字节跳动开发的多模态大型模型,旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,并在OpenCompass测试中展现出与同规模模型相比的卓越性能。Valley-Eagle-7B结合了LargeMLP和ConvAdapter构建投影器,并引入了VisionEncoder,以增强模型在极端场景下的性能。
智能图像识别API
Monster API是一个智能图像识别API,可以帮助开发者快速实现图像识别功能。它提供了多种功能,包括物体识别、人脸识别、文字识别等。优势是准确率高、响应速度快、易于集成。价格根据使用情况计费,具体请查看官方网站。Monster API的定位是为开发者提供强大的图像识别能力,帮助他们构建智能应用。
智能图像识别服务
云识别是一款提供智能图像识别服务的产品。通过使用先进的深度学习算法,云识别能够实时准确地识别和分类图像中的物体、场景和文字。优势包括高准确率、快速响应、支持多种图像格式和多平台集成。定价根据使用量和功能定制。主要功能包括图像分类、物体检测、场景识别和文字识别等。适用于各种图像处理场景,如图像搜索、内容过滤、自动驾驶、安防监控等。
多模态大型模型,处理文本、图像和视频数据
Valley是由字节跳动开发的尖端多模态大型模型,能够处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,比其他开源模型表现更优。在OpenCompass测试中,与同规模模型相比,平均得分大于等于67.40,在小于10B模型中排名第二。Valley-Eagle版本参考了Eagle,引入了一个可以灵活调整令牌数量并与原始视觉令牌并行的视觉编码器,增强了模型在极端场景下的性能。
AI图像识别购物助手
HopShop是一款基于AI图像识别的购物助手,用户可以通过上传图片或截图来搜索相似的服装商品,获取最佳价格并节省时间。同时,商家也可以通过HopShop增加销售量并提升转化率。
先进的多模态大型语言模型系列
InternVL 2.5是OpenGVLab推出的多模态大型语言模型系列,它在InternVL 2.0的基础上进行了显著的训练和测试策略增强,以及数据质量提升。该模型系列能够处理图像、文本和视频数据,具备多模态理解和生成的能力,是当前多模态人工智能领域的前沿产品。InternVL 2.5系列模型以其高性能和开源特性,为多模态任务提供了强大的支持。
先进的开源多模态模型
Yi-VL-34B是 Yi Visual Language(Yi-VL)模型的开源版本,是一种多模态模型,能够理解和识别图像,并进行关于图像的多轮对话。Yi-VL 在最新的基准测试中表现出色,在 MMM 和 CMMMU 两个基准测试中均排名第一。
多模态大型语言模型,支持图像和文本理解
InternVL 2.5是一系列先进的多模态大型语言模型(MLLM),它在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,保持了其核心模型架构。该模型集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5支持多图像和视频数据,通过动态高分辨率训练方法,增强了模型处理多模态数据的能力。
先进的多模态AI模型家族
Molmo是一个开放的、最先进的多模态AI模型家族,旨在通过学习指向其感知的内容,实现与物理和虚拟世界的丰富互动,为下一代应用程序提供行动和交互的能力。Molmo通过学习指向其感知的内容,实现了与物理和虚拟世界的丰富互动,为下一代应用程序提供行动和交互的能力。
InternVL3开源:7种尺寸覆盖文、图、视频处理,多模态能力扩展至工业图像分析
InternVL3是由OpenGVLab开源发布的多模态大型语言模型(MLLM),具备卓越的多模态感知和推理能力。该模型系列包含从1B到78B共7个尺寸,能够同时处理文字、图片、视频等多种信息,展现出卓越的整体性能。InternVL3在工业图像分析、3D视觉感知等领域表现出色,其整体文本性能甚至优于Qwen2.5系列。该模型的开源为多模态应用开发提供了强大的支持,有助于推动多模态技术在更多领域的应用。
图像识别、标注和关键词生成工具
CrossPrism for MacOS 是一款专为摄影师设计的图像识别、标注和关键词生成工具。它利用多核 CPU、GPU 和神经引擎,能够识别物种、生成标题和描述,并支持模型训练的可定制性。用户可以在本地自动标注无限量的原始照片,确保所有照片安全地存储在 Mac 上,无需担心云服务中断、数据锁定或文件传输问题。其20多个专家模型可以对从鸟类到地标的各种内容进行分类,并提供新的视角来整理目录和重新发现旧照片。此外,它还支持视频处理、Lightroom 插件、图像质量评估等功能,使其成为一个强大的筛选工具。
多模态大型语言模型,支持图像和文本处理。
Llama-3.2-11B-Vision 是 Meta 发布的一款多模态大型语言模型(LLMs),它结合了图像和文本处理的能力,旨在提高视觉识别、图像推理、图像描述和回答有关图像的一般问题的性能。该模型在常见的行业基准测试中的表现超过了众多开源和封闭的多模态模型。
统一多模态视频生成系统
UniVG是一款统一多模态视频生成系统,能够处理多种视频生成任务,包括文本和图像模态。通过引入多条件交叉注意力和偏置高斯噪声,实现了高自由度和低自由度视频生成。在公共学术基准MSR-VTT上实现了最低的Fr'echet视频距离(FVD),超越了当前开源方法在人类评估上的表现,并与当前闭源方法Gen2不相上下。
多模态视觉任务的高效转换模型
LLaVA-OneVision是一款由字节跳动公司与多所大学合作开发的多模态大型模型(LMMs),它在单图像、多图像和视频场景中推动了开放大型多模态模型的性能边界。该模型的设计允许在不同模态/场景之间进行强大的迁移学习,展现出新的综合能力,特别是在视频理解和跨场景能力方面,通过图像到视频的任务转换进行了演示。
基于 Transformer 的图像识别模型
Google Vision Transformer 是一款基于 Transformer 编码器的图像识别模型,使用大规模图像数据进行预训练,可用于图像分类等任务。该模型在 ImageNet-21k 数据集上进行了预训练,并在 ImageNet 数据集上进行了微调,具备良好的图像特征提取能力。该模型通过将图像切分为固定大小的图像块,并线性嵌入这些图像块来处理图像数据。同时,模型在输入序列前添加了位置编码,以便在 Transformer 编码器中处理序列数据。用户可以通过在预训练的编码器之上添加线性层进行图像分类等任务。Google Vision Transformer 的优势在于其强大的图像特征学习能力和广泛的适用性。该模型免费提供使用。
AI图像识别,释放人工智能的非凡功能
AI VISION 是一款突破性的图像识别应用程序,利用先进的图像识别技术,能够识别图像并为您的问题提供即时答案。具有无与伦比的准确性,无论您是好奇的探索者、专注的学生还是需要快速准确信息的专业人士,AI VISION 都能满足您的需求。它还提供实时解答功能,无缝的用户体验和无限的可能性。AI VISION 适用于教育研究、旅行见解或满足好奇心,让您在每次遇到图像时做出更明智、更明智的决策。
多模态图像生成模型
Instruct-Imagen是一个多模态图像生成模型,通过引入多模态指令,实现对异构图像生成任务的处理,并在未知任务中实现泛化。该模型利用自然语言整合不同的模态(如文本、边缘、风格、主题等),标准化丰富的生成意图。通过在预训练文本到图像扩散模型上进行两阶段框架的微调,采用检索增强训练和多样的图像生成任务微调,使得该模型在各种图像生成数据集上的人工评估结果表明,其在领域内与先前的任务特定模型相匹配或超越,并展现出对未知和更复杂任务的有希望的泛化能力。
高性能多模态语言模型,适用于图像和视频理解。
MiniCPM-V 2.6是一个基于8亿参数的多模态大型语言模型,它在单图像理解、多图像理解和视频理解等多个领域展现出领先性能。该模型在OpenCompass等多个流行基准测试中取得了平均65.2分的高分,超越了广泛使用的专有模型。它还具备强大的OCR能力,支持多语言,并在效率上表现出色,能够在iPad等终端设备上实现实时视频理解。
智能视频识别和图像识别
Valossa AI是一款智能视频识别和图像识别产品。它能够帮助企业安全地管理和发展视频业务,通过分析和理解视频内容,生成元数据,提供自动预览、内容审核、广告匹配、面部分析等功能。Valossa AI可以广泛应用于视频推广、内容审核、智能广告、实时摄像系统等领域。
多模态嵌入模型,实现文本、图像和截图的无缝检索。
Voyage AI推出的voyage-multimodal-3是一款多模态嵌入模型,它能够将文本和图像(包括PDF、幻灯片、表格等的截图)进行向量化处理,并捕捉关键视觉特征,从而提高文档检索的准确性。这一技术的进步,对于知识库中包含视觉和文本的丰富信息的RAG和语义搜索具有重要意义。voyage-multimodal-3在多模态检索任务中平均提高了19.63%的检索准确率,相较于其他模型表现出色。
图像识别API,为您的图像提供标签、分类和颜色提取
Imagga图像识别API提供图像标签、分类、颜色提取等功能。它可以自动为您的图像分配标签,并根据图像内容进行自动分类。此外,它还可以生成精美的缩略图,并从图像中提取颜色信息。Imagga图像识别API适用于各种场景,包括图像搜索、内容审核、产品推荐等。它的定价根据使用情况而定,提供云端和本地部署两种选择。
多模态AI平台,整合文本、图像和音频交互
GPT-4o是OpenAI推出的先进多模态AI平台,它在GPT-4的基础上进一步扩展,实现了真正的多模态方法,涵盖文本、图像和音频。GPT-4o设计上更快、更低成本、更普及,彻底革新我们与AI互动的方式。它提供了流畅且直观的AI交互体验,无论是参与自然对话、解读复杂文本,还是识别语音中的微妙情感,GPT-4o的适应能力都是无与伦比的。
Qwen2.5-Omni 是阿里云通义千问团队开发的端到端多模态模型,支持文本、音频、图像、视频输入。
Qwen2.5-Omni 是阿里云通义千问团队推出的新一代端到端多模态旗舰模型。该模型专为全方位多模态感知设计,能够无缝处理文本、图像、音频和视频等多种输入形式,并通过实时流式响应同时生成文本与自然语音合成输出。其创新的 Thinker-Talker 架构和 TMRoPE 位置编码技术,使其在多模态任务中表现出色,特别是在音频、视频和图像理解方面。该模型在多个基准测试中超越了类似规模的单模态模型,展现了强大的性能和广泛的应用潜力。目前,Qwen2.5-Omni 已在 Hugging Face、ModelScope、DashScope 和 GitHub 上开源开放,为开发者提供了丰富的使用场景和开发支持。
首个多模态 Mistral 模型,支持图像和文本的混合任务处理。
Pixtral 12B 是 Mistral AI 团队开发的一款多模态 AI 模型,它能够理解自然图像和文档,具备出色的多模态任务处理能力,同时在文本基准测试中也保持了最先进的性能。该模型支持多种图像尺寸和宽高比,能够在长上下文窗口中处理任意数量的图像,是 Mistral Nemo 12B 的升级版,专为多模态推理而设计,不牺牲关键文本处理能力。
© 2025 AIbase 备案号:闽ICP备08105208号-14