需求人群:
"Gemini Robotics的目标受众包括机器人制造商、科研机构和企业,这些群体可以利用该模型开发具有高级交互能力和自主操作能力的机器人,用于工业自动化、服务机器人、医疗辅助等领域。它适合那些需要机器人在复杂环境中执行多样化任务的场景。"
使用场景示例:
在家庭环境中,Gemini Robotics可以协助整理物品、准备食物等。
在工业场景中,用于自动化生产线上的复杂装配任务。
在医疗领域,协助进行手术器械的传递和操作
产品特色:
泛化能力强,能够适应多种任务和新环境
支持多语言交互,理解自然语言指令并快速响应
具备高精度的灵巧操作能力,如折纸和精细抓取
支持多种机器人形态,如双臂机器人和人形机器人
提供空间理解能力,能够进行3D物体检测和路径规划
使用教程:
1. 准备支持Gemini Robotics的机器人硬件平台。
2. 下载并安装Gemini Robotics模型及相关软件。
3. 连接机器人硬件与模型,进行初始化配置。
4. 使用自然语言指令或编程接口向机器人下达任务。
5. 观察机器人执行任务,根据需要调整指令或模型参数。
浏览量:49
最新流量情况
月访问量
3157.62k
平均访问时长
00:01:09
每次访问页数
1.63
跳出率
67.99%
流量来源
直接访问
33.16%
自然搜索
58.78%
邮件
0.05%
外链引荐
6.02%
社交媒体
1.83%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
6.74%
英国
4.79%
印度
8.71%
韩国
3.74%
美国
24.48%
基于Gemini 2.0的机器人模型,将AI带入物理世界,具备视觉、语言和动作能力。
Gemini Robotics是Google DeepMind推出的一种先进的人工智能模型,专为机器人应用而设计。它基于Gemini 2.0架构,通过视觉、语言和动作(VLA)的融合,使机器人能够执行复杂的现实世界任务。该技术的重要性在于它推动了机器人从实验室走向日常生活和工业应用的进程,为未来智能机器人的发展奠定了基础。Gemini Robotics的主要优点包括强大的泛化能力、交互性和灵巧性,使其能够适应不同的任务和环境。目前,该技术处于研究和开发阶段,尚未明确具体的价格和市场定位。
智元发布首个通用具身基座大模型GO-1,开创性提出ViLLA架构,推动具身智能发展。
智元通用具身基座大模型GO-1是智元推出的一款革命性的人工智能模型。该模型基于创新的Vision-Language-Latent-Action(ViLLA)架构,通过多模态大模型(VLM)和混合专家(MoE)系统,实现了从视觉和语言输入到机器人动作执行的高效转换。GO-1能够利用人类视频和真实机器人数据进行学习,具备强大的泛化能力,能够在极少数据甚至零样本下快速适应新任务和环境。其主要优点包括高效的学习能力、强大的泛化性能以及对多种机器人本体的适配性。该模型的推出标志着具身智能向通用化、开放化和智能化方向迈出了重要一步,有望在商业、工业和家庭等多个领域发挥重要作用。
OpenAI Agents SDK 是一个用于构建自主智能体的开发工具包,简化多智能体工作流的编排。
OpenAI Agents SDK 是一个用于构建自主智能体的开发工具包。它基于 OpenAI 的先进模型能力,如高级推理、多模态交互和新的安全技术,为开发者提供了一种简化的方式来构建、部署和扩展可靠的智能体应用。该工具包不仅支持单智能体和多智能体工作流的编排,还集成了可观测性工具,帮助开发者追踪和优化智能体的执行流程。其主要优点包括易于配置的 LLM 模型、智能的智能体交接机制、可配置的安全检查以及强大的调试和性能优化功能。该工具包适用于需要自动化复杂任务的企业和开发者,旨在通过智能体技术提升生产力和效率。
Inception Labs 推出新一代扩散式大语言模型,提供极速、高效和高质量的语言生成能力。
Inception Labs 是一家专注于开发扩散式大语言模型(dLLMs)的公司。其技术灵感来源于先进的图像和视频生成系统,如 Midjourney 和 Sora。通过扩散模型,Inception Labs 提供了比传统自回归模型快 5-10 倍的速度、更高的效率和更强的生成控制能力。其模型支持并行文本生成,能够纠正错误和幻觉,适合多模态任务,并且在推理和结构化数据生成方面表现出色。公司由斯坦福、UCLA 和康奈尔大学的研究人员和工程师组成,是扩散模型领域的先驱。
Clone是一款具有革命性人工肌肉技术Myofiber的类人机器人,能够自然行走。
Clone是一款由Clone Robotics开发的类人机器人,代表了机器人技术的前沿水平。它采用了革命性的人工肌肉技术Myofiber,能够模拟自然动物骨骼的运动。Myofiber技术在重量、功率密度、速度、力量与重量比以及能效方面达到了前所未有的水平,使机器人具备了自然的行走能力、强大的力量和灵活性。Clone不仅在技术上具有重要意义,还为未来机器人在家庭、工业和服务领域的应用提供了新的可能性。其定位为高端科技产品,目标受众是对前沿科技感兴趣的个人、科研机构和企业。
UniTok是一个用于视觉生成和理解的统一视觉分词器。
UniTok是一种创新的视觉分词技术,旨在弥合视觉生成和理解之间的差距。它通过多码本量化技术,显著提升了离散分词器的表示能力,使其能够捕捉到更丰富的视觉细节和语义信息。这一技术突破了传统分词器在训练过程中的瓶颈,为视觉生成和理解任务提供了一种高效且统一的解决方案。UniTok在图像生成和理解任务中表现出色,例如在ImageNet上实现了显著的零样本准确率提升。该技术的主要优点包括高效性、灵活性以及对多模态任务的强大支持,为视觉生成和理解领域带来了新的可能性。
Migician 是一个专注于多图像定位的多模态大语言模型,能够实现自由形式的多图像精确定位。
Migician 是清华大学自然语言处理实验室开发的一种多模态大语言模型,专注于多图像定位任务。该模型通过引入创新的训练框架和大规模数据集 MGrounding-630k,显著提升了多图像场景下的精确定位能力。它不仅超越了现有的多模态大语言模型,甚至在性能上超过了更大规模的 70B 模型。Migician 的主要优点在于其能够处理复杂的多图像任务,并提供自由形式的定位指令,使其在多图像理解领域具有重要的应用前景。该模型目前在 Hugging Face 上开源,供研究人员和开发者使用。
Mochii AI 是一款由尖端模型支持的个性化人工智能生态系统,助力人类与 AI 协作的未来。
Mochii AI 旨在通过自适应记忆、自定义个性和无缝多平台集成,推动人类与人工智能的协作。它支持多种高级 AI 模型,如 OpenAI、Claude、Gemini、DALL-E 和 Stable Diffusion,能够实现智能对话、内容创作、数据分析和图像生成等功能。产品提供免费层级,无需信用卡即可使用,适合希望提升工作效率和创造力的专业人士。
TheoremExplainAgent 是一个用于生成多模态定理解释视频的智能系统。
TheoremExplainAgent 是一款基于人工智能的模型,专注于为数学和科学定理生成详细的多模态解释视频。它通过结合文本和视觉动画,帮助用户更深入地理解复杂概念。该产品利用 Manim 动画技术生成超过 5 分钟的长视频,填补了传统文本解释的不足,尤其在揭示推理错误方面表现出色。它主要面向教育领域,旨在提升学习者对 STEM 领域定理的理解能力,目前尚未明确其价格和商业化定位。
ZeroBench 是一个针对当代大型多模态模型的高难度视觉基准测试。
ZeroBench 是一个专为评估大型多模态模型(LMMs)视觉理解能力而设计的基准测试。它通过 100 个精心设计且经过严格审查的复杂问题,以及 334 个子问题,挑战当前模型的极限。该基准测试旨在填补现有视觉基准的不足,提供更具挑战性和高质量的评估工具。ZeroBench 的主要优点是其高难度、轻量级、多样化和高质量的特点,使其能够有效区分模型的性能。此外,它还提供了详细的子问题评估,帮助研究人员更好地理解模型的推理能力。
Magma 是一个能够理解和执行多模态输入的基础模型,可用于复杂任务和环境。
Magma 是微软研究团队推出的一个多模态基础模型,旨在通过视觉、语言和动作的结合,实现复杂任务的规划和执行。它通过大规模的视觉语言数据预训练,具备了语言理解、空间智能和动作规划的能力,能够在 UI 导航、机器人操作等任务中表现出色。该模型的出现为多模态 AI 代理任务提供了一个强大的基础框架,具有广泛的应用前景。
VideoRAG 是一个用于处理极长上下文视频的检索增强型生成框架。
VideoRAG 是一种创新的检索增强型生成框架,专门用于理解和处理极长上下文视频。它通过结合图驱动的文本知识锚定和层次化多模态上下文编码,实现了对无限制长度视频的理解。该框架能够动态构建知识图谱,保持多视频上下文的语义连贯性,并通过自适应多模态融合机制优化检索效率。VideoRAG 的主要优点包括高效的极长上下文视频处理能力、结构化的视频知识索引以及多模态检索能力,使其能够为复杂查询提供全面的回答。该框架在长视频理解领域具有重要的技术价值和应用前景。
OmniHuman-1 是一种基于单张人像和运动信号生成人类视频的多模态框架。
OmniHuman-1 是一个端到端的多模态条件人类视频生成框架,能够基于单张人像和运动信号(如音频、视频或其组合)生成人类视频。该技术通过混合训练策略克服了高质量数据稀缺的问题,支持任意宽高比的图像输入,生成逼真的人类视频。它在弱信号输入(尤其是音频)方面表现出色,适用于多种场景,如虚拟主播、视频制作等。
LLMs 无需任何培训就能看见和听见
MILS是一个由Facebook Research发布的开源项目,旨在展示大型语言模型(LLMs)在未经过任何训练的情况下,能够处理视觉和听觉任务的能力。该技术通过利用预训练的模型和优化算法,实现了对图像、音频和视频的自动描述生成。这一技术突破为多模态人工智能的发展提供了新的思路,展示了LLMs在跨模态任务中的潜力。该模型主要面向研究人员和开发者,为他们提供了一个强大的工具来探索多模态应用。目前该项目是免费开源的,旨在推动学术研究和技术发展。
Janus-Pro-7B 是一个新型的自回归框架,统一多模态理解和生成。
Janus-Pro-7B 是一个强大的多模态模型,能够同时处理文本和图像数据。它通过分离视觉编码路径,解决了传统模型在理解和生成任务中的冲突,提高了模型的灵活性和性能。该模型基于 DeepSeek-LLM 架构,使用 SigLIP-L 作为视觉编码器,支持 384x384 的图像输入,并在多模态任务中表现出色。其主要优点包括高效性、灵活性和强大的多模态处理能力。该模型适用于需要多模态交互的场景,例如图像生成和文本理解。
Humanity's Last Exam 是一个用于衡量大型语言模型能力的多模态基准测试。
Humanity's Last Exam 是一个由全球专家合作开发的多模态基准测试,旨在衡量大型语言模型在学术领域的表现。它包含来自 50 个国家超过 500 个机构的近 1000 名专家贡献的 3000 个问题,覆盖超过 100 个学科。该测试旨在成为最终的封闭式学术基准,通过挑战模型的极限来推动人工智能技术的发展。其主要优点是难度高,能够有效评估模型在复杂学术问题上的表现。
UI-TARS 是一个用于自动化图形用户界面交互的下一代原生 GUI 代理模型。
UI-TARS 是由字节跳动开发的一种新型 GUI 代理模型,专注于通过类似人类的感知、推理和行动能力与图形用户界面进行无缝交互。该模型将感知、推理、定位和记忆等关键组件集成到单一的视觉语言模型中,能够实现无需预定义工作流程或手动规则的端到端任务自动化。其主要优点包括强大的跨平台交互能力、多步任务执行能力以及从合成和真实数据中学习的能力,适用于多种自动化场景,如桌面、移动和网页环境。
MinMo是一款多模态大型语言模型,用于无缝语音交互。
MinMo是阿里巴巴集团通义实验室开发的一款多模态大型语言模型,拥有约80亿参数,专注于实现无缝语音交互。它通过多个阶段的训练,包括语音到文本对齐、文本到语音对齐、语音到语音对齐和全双工交互对齐,在140万小时的多样化语音数据和广泛的语音任务上进行训练。MinMo在语音理解和生成的各种基准测试中达到了最先进的性能,同时保持了文本大型语言模型的能力,并支持全双工对话,即用户和系统之间的同时双向通信。此外,MinMo还提出了一种新颖且简单的语音解码器,在语音生成方面超越了以往的模型。MinMo的指令遵循能力得到了增强,支持根据用户指令控制语音生成,包括情感、方言和语速等细节,并模仿特定的声音。MinMo的语音到文本延迟约为100毫秒,全双工延迟理论上约为600毫秒,实际约为800毫秒。MinMo的开发旨在克服以往对齐多模态模型的主要限制,为用户提供更自然、流畅和人性化的语音交互体验。
全能AI工作空间,实时语音助手搭配多模态画布,助力高效创作与思考。
Albus AI是一个由人工智能驱动的平台,旨在为知识和创意专业人士提供高效的工作空间。通过实时语音助手和多模态画布,用户可以快速处理大量信息,激发新想法,节省宝贵的时间和注意力。该平台利用大型语言模型和机器学习服务,能够连接不同思想,避免用户在多个标签和应用之间来回切换。Albus AI的出现,为创意工作者、记者、研究人员等专业人士提供了强大的辅助工具,帮助他们更好地发挥人类智慧,为社会创造价值。目前,Albus AI提供有限的早期访问价格,订阅价格为9美元。
开源的视觉语言模型,可在多种设备上运行。
Moondream AI是一个开源的视觉语言模型,具有强大的多模态处理能力。它支持多种量化格式,如fp16、int8、int4,能够在服务器、PC、移动设备等多种目标设备上进行GPU和CPU优化推理。其主要优点包括快速、高效、易于部署,且采用Apache 2.0许可证,允许用户自由使用和修改。Moondream AI的定位是为开发者提供一个灵活、高效的人工智能解决方案,适用于需要视觉和语言处理能力的各种应用场景。
定制化漫画生成模型,连接多模态LLMs和扩散模型。
DiffSensei是一个结合了多模态大型语言模型(LLMs)和扩散模型的定制化漫画生成模型。它能够根据用户提供的文本提示和角色图像,生成可控制的黑白漫画面板,并具有灵活的角色适应性。这项技术的重要性在于它将自然语言处理与图像生成相结合,为漫画创作和个性化内容生成提供了新的可能性。DiffSensei模型以其高质量的图像生成、多样化的应用场景以及对资源的高效利用而受到关注。目前,该模型在GitHub上公开,可以免费下载使用,但具体的使用可能需要一定的计算资源。
多模态大型语言模型,优化图像与文本交互能力
InternVL2_5-4B-MPO-AWQ是一个多模态大型语言模型(MLLM),专注于提升模型在图像和文本交互任务中的表现。该模型基于InternVL2.5系列,并通过混合偏好优化(MPO)进一步提升性能。它能够处理包括单图像和多图像、视频数据在内的多种输入,适用于需要图像和文本交互理解的复杂任务。InternVL2_5-4B-MPO-AWQ以其卓越的多模态能力,为图像-文本到文本的任务提供了一个强大的解决方案。
多模态大型语言模型,提升文本、图像和视频数据处理能力。
Valley是由字节跳动开发的多模态大型模型(MLLM),旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,远超过其他开源模型,并在OpenCompass多模态模型评估排行榜上展现了出色的性能,平均得分67.40,位列已知开源MLLMs(<10B)中的前两名。
多模态大型模型,处理文本、图像和视频数据
Valley是由字节跳动开发的尖端多模态大型模型,能够处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,比其他开源模型表现更优。在OpenCompass测试中,与同规模模型相比,平均得分大于等于67.40,在小于10B模型中排名第二。Valley-Eagle版本参考了Eagle,引入了一个可以灵活调整令牌数量并与原始视觉令牌并行的视觉编码器,增强了模型在极端场景下的性能。
一站式大模型算法、模型及优化工具开源项目
FlagAI是由北京智源人工智能研究院推出的一站式、高质量开源项目,集成了全球各种主流大模型算法技术以及多种大模型并行处理和训练加速技术。它支持高效训练和微调,旨在降低大模型开发和应用的门槛,提高开发效率。FlagAI涵盖了多个领域明星模型,如语言大模型OPT、T5,视觉大模型ViT、Swin Transformer,多模态大模型CLIP等。智源研究院也持续将“悟道2.0”“悟道3.0”大模型项目成果开源至FlagAI,目前该项目已经加入Linux基金会,吸引全球科研力量共同创新、共同贡献。
一种基于视频扩散模型的多任务灵巧手操控通用机器人策略
Video Prediction Policy(VPP)是一种基于视频扩散模型(VDMs)的机器人策略,能够准确预测未来的图像序列,展现出对物理动力学的良好理解。VPP利用VDMs中的视觉表示来反映物理世界的演变,这种表示被称为预测性视觉表示。通过结合多样化的人类或机器人操控数据集,并采用统一的视频生成训练目标,VPP在两个模拟环境和两个真实世界基准测试中均优于现有方法。特别是在Calvin ABC-D基准测试中,相较于先前的最佳技术,VPP实现了28.1%的相对改进,并在复杂的真实世界灵巧手操控任务中提高了28.8%的成功率。
端侧全模态理解模型,软硬协同释放无穹端侧智能
Infini-Megrez是一个由无问芯穹研发的端侧全模态理解模型,它基于Megrez-3B-Instruct扩展,具备图片、文本、音频三种模态数据的理解分析能力,并在图像理解、语言理解和语音理解三个方面均取得最优精度。该模型通过软硬协同优化,确保了各结构参数与主流硬件高度适配,推理速度领先同精度模型最大300%。它简单易用,采用最原始的LLaMA结构,开发者无需任何修改便可将模型部署于各种平台,最小化二次开发复杂度。此外,Infini-Megrez还提供了完整的WebSearch方案,使模型可以自动决策搜索调用时机,在搜索和对话中自动切换,并提供更好的总结效果。
WePOINTS项目,提供多模态模型的统一框架
WePOINTS是由微信AI团队开发的一系列多模态模型,旨在创建一个统一框架,容纳各种模态。这些模型利用最新的多模态模型进展和技术,推动内容理解和生成的无缝统一。WePOINTS项目不仅提供了模型,还包括了预训练数据集、评估工具和使用教程,是多模态人工智能领域的重要贡献。
开源多模态大型语言模型系列
InternVL 2.5是基于InternVL 2.0的高级多模态大型语言模型系列,它在保持核心模型架构的同时,在训练和测试策略以及数据质量方面引入了显著的增强。该模型深入探讨了模型扩展与性能之间的关系,系统地探索了视觉编码器、语言模型、数据集大小和测试时配置的性能趋势。通过在包括多学科推理、文档理解、多图像/视频理解、现实世界理解、多模态幻觉检测、视觉定位、多语言能力和纯语言处理在内的广泛基准测试中进行的广泛评估,InternVL 2.5展现出了与GPT-4o和Claude-3.5-Sonnet等领先商业模型相媲美的竞争力。特别是,该模型是第一个在MMMU基准测试中超过70%的开源MLLM,通过链式思考(CoT)推理实现了3.7个百分点的提升,并展示了测试时扩展的强大潜力。
© 2025 AIbase 备案号:闽ICP备08105208号-14