需求人群:
"智元灵犀X1的目标受众包括机器人爱好者、教育工作者、研究人员和开发者。它适合他们因为它提供了一个开放的平台,可以用于教学、研究和开发智能机器人应用。此外,其高度的可定制性和灵活性使其成为探索人工智能和机器人技术的理想的工具。"
使用场景示例:
教育机构使用智元灵犀X1进行编程和机械工程的教学
研究人员利用其开源代码进行人工智能算法的实验和开发
商业开发者基于智元灵犀X1平台开发定制化的服务机器人
产品特色:
• 29个关节和2个夹爪,支持复杂动作的执行
• 支持扩展头部3自由度,增加机器人的功能性
• 提供BOM清单、整机STEP、整机图纸等多种设计资料
• 开源代码,包括推理代码和训练代码,便于二次开发
• 详细的开发指南,帮助用户快速搭建和使用
• 支持多种编程语言和开发环境,提高开发效率
• 适用于教育、研究和商业开发等多种场景
使用教程:
1. 访问智元灵犀X1开发指南页面并下载必要的设计资料和开源代码
2. 根据开发指南中的步骤搭建机器人硬件
3. 安装和配置所需的开发环境
4. 学习并理解提供的开源代码,包括推理代码和训练代码
5. 根据需要对代码进行修改和扩展,以实现特定的功能
6. 利用智元灵犀X1的关节和夹爪执行复杂的动作和任务
7. 参与社区讨论,与其他开发者交流经验和问题
8. 定期更新软件和硬件,以利用最新的技术进步
浏览量:24
最新流量情况
月访问量
47.21k
平均访问时长
00:03:13
每次访问页数
2.73
跳出率
41.73%
流量来源
直接访问
43.63%
自然搜索
46.60%
邮件
0.07%
外链引荐
6.27%
社交媒体
2.89%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
80.63%
新加坡
1.45%
美国
10.28%
全栈开源机器人
智元灵犀X1是一款开源人形机器人,具有29个关节和2个夹爪,支持扩展头部3自由度。它提供了详细的开发指南和开源代码,使开发者能够快速搭建并进行二次开发。该产品代表了智能机器人领域的先进技术,具有高度的灵活性和可扩展性,适用于教育、研究和商业开发等多种场景。
开源视觉-语言-动作模型,推动机器人操作技术发展。
OpenVLA是一个具有7亿参数的开源视觉-语言-动作(VLA)模型,通过在Open X-Embodiment数据集上的970k机器人剧集进行预训练。该模型在通用机器人操作策略上设定了新的行业标准,支持开箱即用控制多个机器人,并且可以通过参数高效的微调快速适应新的机器人设置。OpenVLA的检查点和PyTorch训练流程完全开源,模型可以从HuggingFace下载并进行微调。
专为软件改进设计的开源大型语言模型。
Lingma SWE-GPT是一个开源的大型语言模型,专注于软件工程领域的任务,旨在提供智能化的开发支持。该模型基于Qwen系列基础模型,经过额外训练以增强其在复杂软件工程任务中的能力。它在软件工程智能代理的权威排行榜上表现出色,适合需要自动化软件改进的开发团队和研究人员。
将通用人工智能带入物理世界
Physical Intelligence (π) 是一个由工程师、科学家、机器人学家和公司建设者组成的团队,致力于开发基础模型和学习算法,以驱动当今的机器人和未来的物理驱动设备。该团队旨在将通用人工智能技术应用于物理世界,推动机器人技术的发展和创新。
业界领先的开源大型混合专家模型
Tencent-Hunyuan-Large(混元大模型)是由腾讯推出的业界领先的开源大型混合专家(MoE)模型,拥有3890亿总参数和520亿激活参数。该模型在自然语言处理、计算机视觉和科学任务等领域取得了显著进展,特别是在处理长上下文输入和提升长上下文任务处理能力方面表现出色。混元大模型的开源,旨在激发更多研究者的创新灵感,共同推动AI技术的进步和应用。
首款通用型机器人基础模型
π0是一个通用型机器人基础模型,旨在通过实体化训练让AI系统获得物理智能,能够执行各种任务,就像大型语言模型和聊天机器人助手一样。π0通过训练在机器人上的实体经验获得物理智能,能够直接输出低级电机命令,控制多种不同的机器人,并可以针对特定应用场景进行微调。π0的开发代表了人工智能在物理世界应用方面的重要进步,它通过结合大规模多任务和多机器人数据收集以及新的网络架构,提供了迄今为止最有能力、最灵巧的通用型机器人政策。
开源人工智能定义,推动AI领域的开放与合作
Open Source AI Definition(OSAID)是由Open Source Initiative(OSI)发布的行业首个开源人工智能定义。它提供了一个标准,通过社区领导的开放和公共评估来验证一个AI系统是否可以被认为是开源AI。OSAID v1.0的发布是多年研究和合作的结果,经过国际研讨会和为期一年的共同设计过程。这个定义要求开源模型提供足够的训练数据信息,以便熟练的人可以使用相同或类似的数据重建一个大致等效的系统。OSAID的发布对于推动AI领域的开放性、透明度和合作具有重要意义,它强调了开源原则在AI发展中的核心地位,并为独立机器学习研究人员和大型AI开发者之间的透明度提供了支持。
超轻量级数字人模型,移动端实时运行
Ultralight-Digital-Human是一个超轻量级的数字人模型,可以在移动端实时运行。这个模型是开源的,据开发者所知,它是第一个如此轻量级的开源数字人模型。该模型的主要优点包括轻量级设计,适合移动端部署,以及实时运行的能力。它的背后是深度学习技术,特别是在人脸合成和声音模拟方面的应用,这使得数字人模型能够以较低的资源消耗实现高质量的表现。产品目前是免费的,主要面向技术爱好者和开发者。
模块化仿人机器人,用于强化学习训练
Agibot X1是由Agibot开发的模块化仿人机器人,具有高自由度,基于Agibot开源框架AimRT作为中间件,并使用强化学习进行运动控制。该项目是Agibot X1使用的强化学习训练代码,可以与Agibot X1提供的推理软件结合用于真实机器人和模拟步行调试,或导入其他机器人模型进行训练。
模块化仿人机器人,具有高自由度
Agibot X1是由Agibot开发的模块化仿人机器人,具有高自由度,基于Agibot开源框架AimRT作为中间件,并使用强化学习进行运动控制。该项目包括模型推理、平台驱动和软件仿真等多个功能模块。AimRT框架是一个用于机器人应用开发的开源框架,它提供了一套完整的工具和库,以支持机器人的感知、决策和行动。Agibot X1项目的重要性在于它为机器人研究和教育提供了一个高度可定制和可扩展的平台。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
未来感机器人,轻松上手,玩得尽兴。
BabyAlpha Chat 是一款具有未来感的机器人模型,全身搭载12个高性能执行器,配合蔚蓝自研五层运动控制算法,使得其运动性能极其出众。最大前进速度可达每小时3.2公里,最大旋转速度可达每秒180度。BabyAlpha Chat 不仅是一个高科技玩具,也是教育和娱乐的完美结合,适合各个年龄段的用户。其价格亲民,起售价为4999元,并有特惠活动直降2000元,截止日期为11月16日。
行业领先的面部操作平台
FaceFusion Labs 是一个专注于面部操作的领先平台,它利用先进的技术来实现面部特征的融合和操作。该平台主要优点包括高精度的面部识别和融合能力,以及对开发者友好的API接口。FaceFusion Labs 背景信息显示,它在2024年10月15日进行了初始提交,由Henry Ruhs主导开发。产品定位为开源项目,鼓励社区贡献和协作。
与您的PDF文件进行对话
PDFtoChat是一个允许用户与PDF文件进行对话的平台。它通过AI技术分析PDF内容,让用户能够以提问的方式获取信息,极大地提高了处理文档的效率。该产品背景信息显示,它是由Together AI和Mixtral提供支持的,并且是开源的,源代码可在GitHub上找到。PDFtoChat的主要优点包括免费使用、易于上手、能够处理复杂的文档内容,并且支持开源社区的贡献。
先进的通用机器人代理
GR-2是一个先进的通用机器人代理,专为多样化和可泛化的机器人操作而设计。它首先在大量互联网视频上进行预训练,以捕捉世界的动态。这种大规模预训练涉及3800万视频剪辑和超过500亿个标记,使GR-2能够在随后的策略学习中跨广泛范围的机器人任务和环境进行泛化。随后,GR-2针对视频生成和动作预测进行了微调,使用机器人轨迹。它展示了令人印象深刻的多任务学习能力,在100多个任务中平均成功率达到97.7%。此外,GR-2在新的、以前未见过的场景中表现出色,包括新的背景、环境、对象和任务。值得注意的是,GR-2随着模型大小的增加而高效扩展,突显了其持续增长和应用的潜力。
将任何PDF转换为播客集!
Open NotebookLM是一个利用开源语言模型和文本到语音模型的工具,它可以处理PDF内容,生成适合音频播客的自然对话,并将其输出为MP3文件。该项目的灵感来自于NotebookLM工具,通过使用开源的大型语言模型(LLMs)和文本到语音模型来实现。它不仅提高了信息的可访问性,还为内容创作者提供了一种新的媒体形式,使他们能够将书面内容转换为音频格式,扩大其受众范围。
前沿级多模态大型语言模型,实现视觉-语言任务的先进性能。
NVLM 1.0是一系列前沿级的多模态大型语言模型(LLMs),在视觉-语言任务上取得了与领先专有模型和开放访问模型相媲美的先进成果。值得注意的是,NVLM 1.0在多模态训练后,其文本性能甚至超过了其LLM主干模型。我们为社区开源了模型权重和代码。
家用智能人形机器人,学习照顾您的生活。
NEO是1X Technologies公司开发的一款家用智能人形机器人,它通过模拟学习,能够理解自然语言和物理空间,执行实际任务。NEO基于EVE机器人的现实世界经验,通过1X Studio的远程操作训练,能够智能地完成任务。NEO的主要优点包括安全性、智能性和可扩展性,旨在为家庭提供帮助,同时保持安全和高效。
高效编码的开源大型语言模型
Yi-Coder是一系列开源的代码大型语言模型(LLMs),在少于100亿参数的情况下提供最先进的编码性能。它有两种尺寸—1.5B和9B参数—提供基础和聊天版本,旨在高效推理和灵活训练。Yi-Coder-9B在GitHub的代码库级别代码语料库和从CommonCrawl筛选的代码相关数据上,额外训练了2.4万亿高质量token。Yi-Coder在多种编程任务中表现出色,包括基础和竞技编程、代码编辑和仓库级完成、长上下文理解以及数学推理。
一个用于与ChatGPT模型交互的提示集合
Awesome ChatGPT Prompts是一个开源仓库,收集了用于与ChatGPT模型交互的提示示例。这个仓库鼓励用户添加自己的提示,并使用ChatGPT生成新的提示。
RWKV v6 Finch 14B,开源大模型,高效处理长文本。
RWKV v6 Finch 14B是RWKV架构的第六个版本,也是该系列中最大的模型。它通过引入数据依赖性到token shift和time-mixing中,提高了处理长文本时的效率。Finch 14B模型在处理提示时,能够更好地管理其长期记忆,从而提供更广泛的应用范围。该模型是开源的,由Linux Foundation认可,并且接受社区的GPU集群时间捐赠以支持训练。
小型语言模型,提供高准确度的AI能力。
Mistral-NeMo-Minitron 8B是由NVIDIA发布的小型语言模型,它是Mistral NeMo 12B模型的精简版,能够在保持高准确度的同时,提供计算效率,使其能够在GPU加速的数据中心、云和工作站上运行。该模型通过NVIDIA NeMo平台进行定制开发,结合了剪枝和蒸馏两种AI优化方法,以降低计算成本的同时提供与原始模型相当的准确度。
低代码工具,快速构建和协调多智能体团队
Tribe AI是一个低代码工具,它利用langgraph框架,让用户能够轻松自定义和协调智能体团队。通过将复杂任务分配给擅长不同领域的智能体,每个智能体可以专注于其最擅长的工作,从而更快更好地解决问题。
开源的多语言代码生成模型
CodeGeeX4-ALL-9B是CodeGeeX4系列模型的最新开源版本,基于GLM-4-9B持续训练,显著提升了代码生成能力。它支持代码补全、生成、代码解释、网页搜索、函数调用、代码问答等功能,覆盖软件开发的多个场景。在公共基准测试如BigCodeBench和NaturalCodeBench上表现优异,是参数少于10亿的最强代码生成模型,实现了推理速度与模型性能的最佳平衡。
探索大脑智能的AI项目
Thousand Brains Project是由Jeff Hawkins和Numenta公司发起,旨在通过理解大脑新皮层的工作原理来开发新型的人工智能系统。该项目基于Thousand Brains Theory of Intelligence,提出了与传统AI系统根本不同的大脑工作原理。项目的目标是构建一种高效且强大的智能系统,能够实现人类所具备的智能能力。Numenta公司开放了其研究资源,包括会议记录、代码开源,并建立了一个围绕其算法的大型社区。该项目得到了盖茨基金会等的资金支持,并鼓励全球研究人员参与或加入这一激动人心的项目。
人类动作模仿与自主技能学习系统
HumanPlus是一个研究项目,旨在通过模仿人类动作来训练人形机器人,从而实现自主技能学习。该项目通过模拟强化学习训练低级策略,并将这些策略应用到真实世界中,实现实时跟踪人类身体和手部动作。通过影子模仿技术,操作员可以远程操作机器人收集全身数据,用于学习不同任务。此外,通过行为克隆技术,机器人能够模仿人类技能,完成各种任务。
一个完全开源的大型语言模型,提供先进的自然语言处理能力。
MAP-NEO是一个完全开源的大型语言模型,它包括预训练数据、数据处理管道(Matrix)、预训练脚本和对齐代码。该模型从零开始训练,使用了4.5T的英文和中文token,展现出与LLaMA2 7B相当的性能。MAP-NEO在推理、数学和编码等具有挑战性的任务中表现出色,超越了同等规模的模型。为了研究目的,我们致力于实现LLM训练过程的完全透明度,因此我们全面发布了MAP-NEO,包括最终和中间检查点、自训练的分词器、预训练语料库以及高效稳定的优化预训练代码库。
下一代本地优先的大型语言模型(LLMs)
anime.gf 是由 moecorp 发起的下一代本地优先的大型语言模型(LLMs),目前正处于积极开发阶段。它代表了一种新兴的本地化和开源的人工智能技术,旨在提供更高效、更个性化的用户体验。
© 2024 AIbase 备案号:闽ICP备08105208号-14