浏览量:42
最新流量情况
月访问量
1950
平均访问时长
00:01:34
每次访问页数
1.80
跳出率
59.03%
流量来源
直接访问
37.50%
自然搜索
42.61%
邮件
0.12%
外链引荐
12.78%
社交媒体
6.01%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
加拿大
13.45%
智利
5.70%
法国
9.69%
英国
19.31%
美国
46.74%
多模态AI模型,图像理解与生成兼备
Mini-Gemini是由香港中文大学终身教授贾佳亚团队开发的多模态模型,具备精准的图像理解能力和高质量的训练数据。该模型结合图像推理和生成,提供不同规模的版本,性能与GPT-4和DALLE3相媲美。Mini-Gemini采用Gemini的视觉双分支信息挖掘方法和SDXL技术,通过卷积网络编码图像并利用Attention机制挖掘信息,同时结合LLM生成文本链接两个模型。
多模态图像生成模型
Instruct-Imagen是一个多模态图像生成模型,通过引入多模态指令,实现对异构图像生成任务的处理,并在未知任务中实现泛化。该模型利用自然语言整合不同的模态(如文本、边缘、风格、主题等),标准化丰富的生成意图。通过在预训练文本到图像扩散模型上进行两阶段框架的微调,采用检索增强训练和多样的图像生成任务微调,使得该模型在各种图像生成数据集上的人工评估结果表明,其在领域内与先前的任务特定模型相匹配或超越,并展现出对未知和更复杂任务的有希望的泛化能力。
多模态文本到图像生成模型
EMMA是一个基于最前沿的文本到图像扩散模型ELLA构建的新型图像生成模型,能够接受多模态提示,通过创新的多模态特征连接器设计,有效整合文本和补充模态信息。该模型通过冻结原始T2I扩散模型的所有参数,并仅调整一些额外层,揭示了预训练的T2I扩散模型可以秘密接受多模态提示的有趣特性。EMMA易于适应不同的现有框架,是生成个性化和上下文感知图像甚至视频的灵活有效工具。
AI多模态数据绑定
ImageBind是一种新的AI模型,能够同时绑定六种感官模态的数据,无需显式监督。通过识别这些模态之间的关系(图像和视频、音频、文本、深度、热成像和惯性测量单元(IMUs)),这一突破有助于推动AI发展,使机器能够更好地分析多种不同形式的信息。探索演示以了解ImageBind在图像、音频和文本模态上的能力。
前沿级多模态AI模型,提供图像和文本理解
Pixtral Large是Mistral AI推出的一款前沿级多模态AI模型,基于Mistral Large 2构建,具备领先的图像理解能力,能够理解文档、图表和自然图像,同时保持Mistral Large 2在文本理解方面的领先地位。该模型在多模态基准测试中表现优异,特别是在MathVista、ChartQA和DocVQA等测试中超越了其他模型。Pixtral Large在MM-MT-Bench测试中也展现了竞争力,超越了包括Claude-3.5 Sonnet在内的多个模型。该模型适用于研究和教育用途的Mistral Research License (MRL),以及适用于商业用途的Mistral Commercial License。
小型多模态模型,支持图像和文本生成
Fuyu-8B是由Adept AI训练的多模态文本和图像转换模型。它具有简化的架构和训练过程,易于理解、扩展和部署。它专为数字代理设计,可以支持任意图像分辨率,回答关于图表和图形的问题,回答基于UI的问题,并对屏幕图像进行细粒度定位。它的响应速度很快,可以在100毫秒内处理大型图像。尽管针对我们的用例进行了优化,但它在标准图像理解基准测试中表现良好,如视觉问答和自然图像字幕。请注意,我们发布的模型是一个基础模型,我们希望您根据具体的用例进行微调,例如冗长的字幕或多模态聊天。在我们的经验中,该模型对于少样本学习和各种用例的微调都表现良好。
多模态自回归模型,擅长文本生成图像
Lumina-mGPT是一个多模态自回归模型家族,能够执行各种视觉和语言任务,特别是在从文本描述生成灵活的逼真图像方面表现突出。该模型基于xllmx模块实现,支持以LLM为中心的多模态任务,适用于深度探索和快速熟悉模型能力。
多模态大型语言模型,理解长图像序列。
mPLUG-Owl3是一个多模态大型语言模型,专注于长图像序列的理解。它能够从检索系统中学习知识,与用户进行图文交替对话,并观看长视频,记住其细节。模型的源代码和权重已在HuggingFace上发布,适用于视觉问答、多模态基准测试和视频基准测试等场景。
谷歌多模态AI模型Gemini,支持文本和图像的组合推理
Gemini是谷歌DeepMind推出的新一代人工智能系统。它能够进行多模态推理,支持文本、图像、视频、音频和代码之间的无缝交互。Gemini在语言理解、推理、数学、编程等多个领域都超越了之前的状态,成为迄今为止最强大的AI系统之一。它有三个不同规模的版本,可满足从边缘计算到云计算的各种需求。Gemini可以广泛应用于创意设计、写作辅助、问题解答、代码生成等领域。
先进的多模态模型,支持图像和文本理解。
Phi-3.5-vision是微软开发的轻量级、最新一代的多模态模型,基于包括合成数据和经过筛选的公开可用网站在内的数据集构建,专注于文本和视觉的高质量、密集推理数据。该模型属于Phi-3模型家族,经过严格的增强过程,结合了监督微调和直接偏好优化,以确保精确的指令遵循和强大的安全措施。
多模态综合理解与创作
DreamLLM是一个学习框架,首次实现了多模态大型语言模型(LLM)在多模态理解和创作之间的协同效应。它通过直接在原始多模态空间中进行采样,生成语言和图像的后验模型。这种方法避免了像CLIP这样的外部特征提取器所固有的限制和信息损失,从而获得了更全面的多模态理解。DreamLLM还通过建模文本和图像内容以及无结构布局的原始交叉文档,有效地学习了所有条件、边缘和联合多模态分布。因此,DreamLLM是第一个能够生成自由形式交叉内容的MLLM。全面的实验证明了DreamLLM作为零样本多模态通才的卓越性能,充分利用了增强的学习协同效应。
基于文本生成图像的多模态扩散变换器模型
Stable Diffusion 3.5 Medium是一个基于文本到图像的生成模型,由Stability AI开发,具有改进的图像质量、排版、复杂提示理解和资源效率。该模型使用了三个固定的预训练文本编码器,通过QK-规范化提高训练稳定性,并在前12个变换层中引入双注意力块。它在多分辨率图像生成、一致性和各种文本到图像任务的适应性方面表现出色。
多模态大型语言模型,支持图像和文本理解。
Pixtral-12b-240910是由Mistral AI团队发布的多模态大型语言模型,它能够处理和理解图像以及文本信息。该模型采用了先进的神经网络架构,能够通过图像和文本的结合输入,提供更加丰富和准确的输出结果。它在图像识别、自然语言处理和多模态交互方面展现出卓越的性能,对于需要图像和文本同时处理的应用场景具有重要意义。
高效扩展多模态大型语言模型至1000图像
LongLLaVA是一个多模态大型语言模型,通过混合架构高效扩展至1000图像,旨在提升图像处理和理解能力。该模型通过创新的架构设计,实现了在大规模图像数据上的有效学习和推理,对于图像识别、分类和分析等领域具有重要意义。
基于多模态的 AI 模型,无缝进行图像、视频、音频和代码的推理
Google Gemini 是一款基于多模态的 AI 模型,能够无缝进行图像、视频、音频和代码的推理。Gemini 是 DeepMind 推出的最先进的 AI 模型,能够在 MMLU(大规模多任务语言理解)等各项测试中超越人类专家。Gemini 具有出色的推理能力,在各种多模态任务中取得了最先进的性能。
统一的多模态生成模型
Unified-IO 2是一个统一的多模态生成模型,能够理解和生成图像、文本、音频和动作。它使用单个编码器-解码器Transformer模型,将不同模式(图像、文本、音频、动作等)的输入和输出都表示为一个共享的语义空间进行处理。该模型从头开始在大规模的多模态预训练语料上进行训练,使用了多模态的去噪目标进行优化。为了学会广泛的技能,该模型还在120个现有数据集上进行微调,这些数据集包含提示和数据增强。Unified-IO 2在GRIT基准测试中达到了最先进的性能,在30多个基准测试中都取得了强劲的结果,包括图像生成和理解、文本理解、视频和音频理解以及机器人操作。
多模态大语言模型,提升多模态推理能力
InternVL2-8B-MPO是一个多模态大语言模型(MLLM),通过引入混合偏好优化(MPO)过程,增强了模型的多模态推理能力。该模型在数据方面设计了自动化的偏好数据构建管线,并构建了MMPR这一大规模多模态推理偏好数据集。在模型方面,InternVL2-8B-MPO基于InternVL2-8B初始化,并使用MMPR数据集进行微调,展现出更强的多模态推理能力,且幻觉现象更少。该模型在MathVista上取得了67.0%的准确率,超越InternVL2-8B 8.7个点,且表现接近于大10倍的InternVL2-76B。
先进的多模态AI模型家族
Molmo是一个开放的、最先进的多模态AI模型家族,旨在通过学习指向其感知的内容,实现与物理和虚拟世界的丰富互动,为下一代应用程序提供行动和交互的能力。Molmo通过学习指向其感知的内容,实现了与物理和虚拟世界的丰富互动,为下一代应用程序提供行动和交互的能力。
多模态AI平台,整合文本、图像和音频交互
GPT-4o是OpenAI推出的先进多模态AI平台,它在GPT-4的基础上进一步扩展,实现了真正的多模态方法,涵盖文本、图像和音频。GPT-4o设计上更快、更低成本、更普及,彻底革新我们与AI互动的方式。它提供了流畅且直观的AI交互体验,无论是参与自然对话、解读复杂文本,还是识别语音中的微妙情感,GPT-4o的适应能力都是无与伦比的。
多模态视觉语言模型
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
多模态大型语言模型,支持图像和文本理解
InternVL 2.5是一系列先进的多模态大型语言模型(MLLM),它在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,保持了其核心模型架构。该模型集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5支持多图像和视频数据,通过动态高分辨率训练方法,增强了模型处理多模态数据的能力。
支持同时理解和生成图像的多模态大型语言模型
Mini-Gemini是一个多模态视觉语言模型,支持从2B到34B的系列密集和MoE大型语言模型,同时具备图像理解、推理和生成能力。它基于LLaVA构建,利用双视觉编码器提供低分辨率视觉嵌入和高分辨率候选区域,采用补丁信息挖掘在高分辨率区域和低分辨率视觉查询之间进行补丁级挖掘,将文本与图像融合用于理解和生成任务。支持包括COCO、GQA、OCR-VQA、VisualGenome等多个视觉理解基准测试。
一个通用的多模态模型,可用于问答、图像描述等任务
HuggingFaceM4/idefics-80b-instruct是一个开源的多模态模型,它可以接受图像和文本的输入,输出相关的文本内容。该模型在视觉问答、图像描述等任务上表现出色,是一个通用的智能助手模型。它由Hugging Face团队开发,基于开放数据集训练,提供免费使用。
首个多模态 Mistral 模型,支持图像和文本的混合任务处理。
Pixtral 12B 是 Mistral AI 团队开发的一款多模态 AI 模型,它能够理解自然图像和文档,具备出色的多模态任务处理能力,同时在文本基准测试中也保持了最先进的性能。该模型支持多种图像尺寸和宽高比,能够在长上下文窗口中处理任意数量的图像,是 Mistral Nemo 12B 的升级版,专为多模态推理而设计,不牺牲关键文本处理能力。
统一多模态视频生成系统
UniVG是一款统一多模态视频生成系统,能够处理多种视频生成任务,包括文本和图像模态。通过引入多条件交叉注意力和偏置高斯噪声,实现了高自由度和低自由度视频生成。在公共学术基准MSR-VTT上实现了最低的Fr'echet视频距离(FVD),超越了当前开源方法在人类评估上的表现,并与当前闭源方法Gen2不相上下。
大型多模态模型,处理多图像、视频和3D数据。
LLaVA-NeXT是一个大型多模态模型,它通过统一的交错数据格式处理多图像、视频、3D和单图像数据,展示了在不同视觉数据模态上的联合训练能力。该模型在多图像基准测试中取得了领先的结果,并在不同场景中通过适当的数据混合提高了之前单独任务的性能或保持了性能。
© 2025 AIbase 备案号:闽ICP备08105208号-14