需求人群:
"目标受众主要是医学研究人员、医生、医学领域的开发者和学生等。对于医学研究人员,该模型可以帮助他们快速处理和分析大量医学文献,提取关键信息,加速研究进程;医生可以利用其辅助疾病诊断,提高诊断准确性;医学领域的开发者可以将模型集成到相关应用中,开发出更智能的医学软件;医学学生则可以通过该模型学习医学知识,解答疑惑。"
使用场景示例:
1. 一位医学研究人员在研究某种罕见病时,使用SmolDocling-256M-preview模型分析相关的医学文献,快速提取到了关键的研究成果和病例信息,为自己的研究提供了重要参考。
2. 医生在面对一位复杂病症的患者时,将患者的病历输入该模型,模型辅助分析后给出了一些可能的诊断方向,帮助医生更准确地做出了诊断。
3. 医学领域的开发者将SmolDocling-256M-preview模型集成到医学问答APP中,使得APP能够更准确地回答用户提出的医学问题,提升了用户体验和APP的实用性。
产品特色:
- **医学文本理解**:能够理解医学专业术语、句子和段落,准确把握医学文本的含义,用于医学文献阅读等场景。
- **疾病诊断辅助**:通过对患者病历等医学文本的分析,辅助医生进行疾病诊断,提供可能的诊断建议和参考。
- **医学文献摘要**:自动提取医学文献中的关键信息,生成简洁的摘要,帮助研究人员快速了解文献核心内容。
- **药物信息提取**:从医学文本中提取药物的相关信息,如作用机制、副作用等,为药物研究和临床用药提供支持。
- **医学问答系统**:回答医学相关的问题,为医生、患者或医学学习者提供知识解答。
- **临床记录分析**:对临床记录进行分析,挖掘潜在的医学知识和规律,为临床决策提供依据。
- **医学术语标准化**:将不同表述的医学术语进行标准化处理,提高医学文本的一致性和可读性。
- **医学知识图谱构建**:根据医学文本构建知识图谱,有助于医学知识的整合和应用。
使用教程:
1. 访问Hugging Face上的模型页面(https://huggingface.co/ds4sd/SmolDocling-256M-preview ),了解模型的基本信息和使用说明。
2. 根据模型的要求,安装必要的依赖库和开发环境,确保能够运行模型。
3. 准备好需要处理的医学文本数据,确保数据的格式和内容符合模型的输入要求。
4. 选择合适的编程语言(如Python),使用Hugging Face提供的工具或库加载模型。
5. 将准备好的医学文本数据输入到加载的模型中,调用相应的函数或方法进行处理。
6. 对模型输出的结果进行分析和解读,根据具体需求进行进一步的处理或应用。
7. 如果需要对模型进行微调以适应特定任务,可以按照模型提供的微调方法进行操作,然后再次使用微调后的模型进行文本处理。
浏览量:91
最新流量情况
月访问量
25296.55k
平均访问时长
00:04:45
每次访问页数
5.83
跳出率
43.31%
流量来源
直接访问
48.39%
自然搜索
35.85%
邮件
0.03%
外链引荐
12.76%
社交媒体
2.96%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
256M参数的医学领域语言模型,用于医学文本处理等任务
SmolDocling-256M-preview是由ds4sd推出的一个具有256M参数的语言模型,专注于医学领域。其重要性在于为医学文本处理、医学知识提取等任务提供了有效的工具。在医学研究和临床实践中,大量的文本数据需要进行分析和处理,该模型能够理解和处理医学专业语言。主要优点包括在医学领域有较好的性能表现,能够处理多种医学相关的文本任务,如疾病诊断辅助、医学文献摘要等。该模型的背景是随着医学数据的增长,对处理医学文本的技术需求日益增加。其定位是为医学领域的研究人员、医生、开发者等提供语言处理能力支持,目前未提及价格相关信息。
多模态大型语言模型,支持图像和文本处理。
Llama-3.2-11B-Vision 是 Meta 发布的一款多模态大型语言模型(LLMs),它结合了图像和文本处理的能力,旨在提高视觉识别、图像推理、图像描述和回答有关图像的一般问题的性能。该模型在常见的行业基准测试中的表现超过了众多开源和封闭的多模态模型。
高效能长文本处理AI模型
Jamba 1.5 Open Model Family是AI21公司推出的最新AI模型系列,基于SSM-Transformer架构,具有超长文本处理能力、高速度和高质量,是市场上同类产品中表现最优的。这些模型专为企业级应用设计,考虑了资源效率、质量、速度和解决关键任务的能力。
高效能的长文本处理AI模型
AI21-Jamba-1.5-Mini是AI21实验室开发的最新一代混合SSM-Transformer指令跟随基础模型。这款模型以其卓越的长文本处理能力、速度和质量在市场上脱颖而出,相较于同类大小的领先模型,推理速度提升高达2.5倍。Jamba 1.5 Mini和Jamba 1.5 Large专为商业用例和功能进行了优化,如函数调用、结构化输出(JSON)和基础生成。
医学大型语言模型套件
Meditron 是一套开源的医学大型语言模型(LLM)套件。它通过对一份经过综合筛选的医学语料库进行持续预训练,包括选定的 PubMed 论文和摘要、一份新的国际认可的医学指南数据集以及一个通用领域语料库,将 Llama-2 适应到医学领域。Meditron-70B 在相关数据上进行了微调,性能优于 Llama-2-70B、GPT-3.5 和 Flan-PaLM。
AI在医学领域的初步研究
o1 in Medicine是一个专注于医学领域的人工智能模型,旨在通过先进的语言模型技术,提升医学数据的处理能力和诊断准确性。该模型由UC Santa Cruz、University of Edinburgh和National Institutes of Health的研究人员共同开发,通过在多个医学数据集上的测试,展示了其在医学领域的应用潜力。o1模型的主要优点包括高准确率、多语言支持以及对复杂医学问题的深入理解能力。该模型的开发背景是基于当前医疗领域对于高效、准确的数据处理和分析的需求,尤其是在诊断和治疗建议方面。目前,该模型的研究和应用还处于初步阶段,但其在医学教育和临床实践中的应用前景广阔。
基于GPT风格的生物医学语言模型
BioMedLM是由斯坦福大学和DataBricks团队合作开发的基于GPT风格的生物医学语言模型,具有2.7亿参数,通过在生物医学领域的专业知识上训练,可以有效地回答有关医学和生物学的复杂问题。可以在单个A100 GPU上方便地进行微调,并在笔记本电脑上运行推理。在MedMCQA上达到57.3%的得分,在MMLU医学遗传学考试上达到69.0%的得分。产品功能包括生物医学问答系统、患者咨询回答、文献检索与总结、数据隐私与内部部署、模型训练数据的完全记录。BioMedLM已在Hugging Face Hub上公开发布,允许任何人下载并微调模型。
AI驱动的医学文献搜索引擎
Suppr 超能文献是一个利用人工智能技术驱动的医学文献搜索引擎,旨在帮助医学研究人员快速检索和获取相关医学领域的最新研究进展和临床试验信息。它通过限定时间、类型、影响因子、作者、期刊等多重条件,提供精准的文献检索服务,极大地提高了医学研究的效率和质量。
Gemini 2.0 Flash-Lite 是高效的语言模型,专为长文本处理和多种应用场景优化。
Gemini 2.0 Flash-Lite 是 Google 推出的高效语言模型,专为长文本处理和复杂任务优化。它在推理、多模态、数学和事实性基准测试中表现出色,具备简化的价格策略,使得百万级上下文窗口更加经济实惠。Gemini 2.0 Flash-Lite 已在 Google AI Studio 和 Vertex AI 中全面开放,适合企业级生产使用。
医学AI能力开放共享平台
医真是一个医学AI能力开放共享平台。汇聚众多医学院校、科研院所、医疗机构、医疗企业的优秀医学AI产品和解决方案,通过开放接口的方式对外提供服务,助力众多行业以最便捷高效的方式获取医学AI能力,提升工作效率。
Chartnote是一款能够快速完成医学文档的产品。
Chartnote是一款能够快速完成医学文档的插件。它通过使用生成式人工智能、语音识别和智能模板等技术,将医疗记录的撰写变得轻松快捷。它的主要优点是提高工作效率、减少文档撰写时间、提供准确的临床记录。Chartnote适用于医生、护士和其他医疗从业者。
前沿级别的AI模型,提供顶级的指令遵循和长文本处理能力。
EXAONE 3.5是LG AI Research发布的一系列人工智能模型,这些模型以其卓越的性能和成本效益而著称。它们在模型训练效率、去污染处理、长文本理解和指令遵循能力方面表现出色。EXAONE 3.5模型的开发遵循了LG的AI伦理原则,进行了AI伦理影响评估,以确保模型的负责任使用。这些模型的发布旨在推动AI研究和生态系统的发展,并为AI创新奠定基础。
AI21推出的Jamba 1.6模型,专为企业私有部署设计,具备卓越的长文本处理能力。
Jamba 1.6 是 AI21 推出的最新语言模型,专为企业私有部署而设计。它在长文本处理方面表现出色,能够处理长达 256K 的上下文窗口,采用混合 SSM-Transformer 架构,可高效准确地处理长文本问答任务。该模型在质量上超越了 Mistral、Meta 和 Cohere 等同类模型,同时支持灵活的部署方式,包括在本地或 VPC 中私有部署,确保数据安全。它为企业提供了一种无需在数据安全和模型质量之间妥协的解决方案,适用于需要处理大量数据和长文本的场景,如研发、法律和金融分析等。目前,Jamba 1.6 已在多个企业中得到应用,如 Fnac 使用其进行数据分类,Educa Edtech 利用其构建个性化聊天机器人等。
获取药物信息 | AI医学诊断 | AI医学助手
MedGPT是一款可靠方便的搜索药物和健康状况信息的应用。通过创新的ChatGPT API,我们的应用可以作为您的个人医生,为您提供丰富的药物和健康状况信息。通过直观的搜索功能,您可以快速轻松地找到所需的信息,保持健康和了解健康状况。无论您是寻找特定药物的信息,还是想了解特定健康状况的更多信息,我们的应用都可以满足您的需求。现在就下载我们的应用,迈向更健康、更快乐的生活的第一步吧!
一款专为生物医学领域设计的开源大型语言模型
OpenBioLLM-8B是由Saama AI Labs开发的先进开源语言模型,专为生物医学领域设计。该模型在大量高质量的生物医学数据上进行了微调,能够理解并生成具有领域特定准确性和流畅性的文字。它在生物医学基准测试中的表现超越了其他类似规模的开源生物医学语言模型,并与更大的专有和开源模型如GPT-3.5和Meditron-70B相比也展现出更好的结果。
先进的开源生物医学大型语言模型,专为医疗领域设计。
OpenBioLLM-70B是由Saama AI Labs开发的先进开源语言模型,专为生物医学领域设计。该模型在大量高质量的生物医学数据上进行了微调,能够理解和生成具有领域特定准确性和流畅性的文字。它在生物医学基准测试中展示了超越其他类似规模开源生物医学语言模型的优越性能,并且在与更大的专有和开源模型如GPT-4、Gemini、Medtron-70B、Med-PaLM-1和Med-PaLM-2的比较中也展现了更好的结果。
智能医学听写服务
Scribeberry是一款智能医学听写服务,利用人工智能技术帮助医疗专业人士高效转录和管理他们的医学笔记。Scribeberry提供智能医学听写服务,支持医疗专业人士选择模板、生成医学笔记,通过实时患者对话或输入病例详情来产生笔记,并能与Scribeberry进行交流以补充额外的笔记、信函和转诊。
国际领先的语言理解与长文本处理大模型。
GLM-4-Plus是智谱推出的一款基座大模型,它在语言理解、指令遵循和长文本处理等方面性能得到全面提升,保持了国际领先水平。该模型的推出,不仅代表了中国在大模型领域的创新和突破,还为开发者和企业提供了强大的语言处理能力,进一步推动了人工智能技术的发展和应用。
一款基于生物医学数据的8亿参数大型语言模型
Llama-3[8B] Meditron V1.0是一款专为生物医学领域设计的8亿参数的大型语言模型(LLM),在Meta发布Llama-3后24小时内完成微调。该模型在MedQA和MedMCQA等标准基准测试中超越了同参数级别的所有现有开放模型,并且接近70B参数级别医学领域领先的开放模型Llama-2[70B]-Meditron的性能。该工作展示了开放基础模型的创新潜力,是确保资源匮乏地区公平参与访问该技术更大倡议的一部分。
AI驱动的医学文献搜索引擎,一键翻译多种文档格式。
超能文献是一个AI驱动的医学文献搜索引擎,提供文档翻译服务,支持PDF、PPTX、XLSX、DOCX、TXT、HTML等多种文件格式的一键翻译。产品背景信息显示,它旨在帮助用户快速准确地翻译医学文献,提高工作效率。产品的主要优点包括内容专业精准、版式完美如初、一键下载和自由编辑。此外,产品还提供了新用户注册赠送7天会员权益、注册即送500积分以及每日登录赠送100积分等优惠活动。
用AI处理文本
Plus on Setapp是一款AI助手应用,可以帮助您撰写、翻译、总结和解释文本。它可以在任何应用程序中选择文本,并通过简单的快捷键将其发送给AI助手,让它帮您改进、校对、总结、解释或翻译文本。此外,您还可以自定义提示来完成特定任务。Plus on Setapp是Setapp订阅服务中的一部分,订阅费用为9.99美元/月。
专注长文本、多语言、垂直化
达观 “曹植” 大模型是专注于长文本、多语言、垂直化发展的国产大语言模型。具有自动化写作、翻译、专业性报告写作能力,支持多语言应用和垂直行业定制。可提供高质量文案撰写服务,广泛适用于各行业,是解决企业实际问题的智能工具。
医学生最爱的闪卡学习平台
Synaptiq是一款基于间隔重复算法的学习平台,专为医学生设计。它提供医学课程相关的卡片,由医生手工策划和定制。Synaptiq还集成了AXON·AI医学导师,利用GPT-4人工智能进行概念强化。用户可以自动制定个性化的复习计划,并根据证据支持的间隔重复算法进行学习优化。
直接科学回答医学问题
MediSearch是一个搜索引擎,为用户提供直接科学回答医学问题的能力。它汇集了来自可信医学来源的信息,帮助用户获取到科学、可靠的医疗信息。MediSearch的功能包括搜索医学问题、提供专业医学答案、解释医学术语、提供相关医学资讯等。它是医学领域的一站式信息查询工具。
高效处理长文本的先进语言模型
Qwen2.5-Turbo是阿里巴巴开发团队推出的一款能够处理超长文本的语言模型,它在Qwen2.5的基础上进行了优化,支持长达1M个token的上下文,相当于约100万英文单词或150万中文字符。该模型在1M-token Passkey Retrieval任务中实现了100%的准确率,并在RULER长文本评估基准测试中得分93.1,超越了GPT-4和GLM4-9B-1M。Qwen2.5-Turbo不仅在长文本处理上表现出色,还保持了短文本处理的高性能,且成本效益高,每1M个token的处理成本仅为0.3元。
大规模多模态医学数据集
MedTrinity-25M是一个大规模多模态数据集,包含多粒度的医学注释。它由多位作者共同开发,旨在推动医学图像和文本处理领域的研究。数据集的构建包括数据提取、多粒度文本描述生成等步骤,支持多种医学图像分析任务,如视觉问答(VQA)、病理学图像分析等。
生物医学领域的专业通用模型
UltraMedical项目旨在开发生物医学领域的专业通用模型,这些模型旨在回答与考试、临床场景和研究问题相关的问题,同时保持广泛的通用知识基础,以有效处理跨领域问题。通过使用先进的对齐技术,包括监督微调(SFT)、直接偏好优化(DPO)和赔率比偏好优化(ORPO),训练大型语言模型在UltraMedical数据集上,以创建强大且多功能的模型,有效服务于生物医学社区的需求。
Apollo是一个多语言医学领域的模型、数据集、基准和代码库
Apollo项目由FreedomIntelligence组织维护,旨在通过提供多语言医学领域的大型语言模型(LLMs)来民主化医疗AI,覆盖6亿人。该项目包括模型、数据集、基准测试和相关代码。
多模态语言模型,融合文本和语音
Spirit LM是一个基础多模态语言模型,能够自由混合文本和语音。该模型基于一个7B预训练的文本语言模型,通过持续在文本和语音单元上训练来扩展到语音模式。语音和文本序列被串联为单个令牌流,并使用一个小的自动策划的语音-文本平行语料库,采用词级交错方法进行训练。Spirit LM有两个版本:基础版使用语音音素单元(HuBERT),而表达版除了音素单元外,还使用音高和风格单元来模拟表达性。对于两个版本,文本都使用子词BPE令牌进行编码。该模型不仅展现了文本模型的语义能力,还展现了语音模型的表达能力。此外,我们展示了Spirit LM能够在少量样本的情况下跨模态学习新任务(例如ASR、TTS、语音分类)。
© 2025 AIbase 备案号:闽ICP备08105208号-14