需求人群:
["研究人员和开发者:可以利用OpenBioLLM-8B进行生物医学领域的研究和开发工作。","医疗专业人员:能够使用该模型辅助进行临床决策支持、药物监管和医学研究。","教育工作者:可以将其作为教学工具,帮助学生更好地理解生物医学概念和术语。"]
使用场景示例:
利用模型回答有关药物剂量的医学问题。
分析临床笔记,提取关键医疗信息以支持临床决策。
教育领域,辅助学生学习复杂的生物医学概念。
产品特色:
临床笔记总结:能够高效分析和总结复杂的临床笔记、电子健康记录数据和出院总结。
回答医学问题:能够回答广泛的医学问题。
临床实体识别:能够识别和提取临床文本中的疾病、症状、药物、程序和解剖结构等关键医学概念。
生物标志物提取:支持从生物医学文本中提取生物标志物。
分类:能够执行如疾病预测、情感分析、医学文档分类等生物医学分类任务。
去标识化:能够检测并移除医疗记录中的个人身份信息,确保患者隐私。
使用教程:
步骤1:导入transformers和torch库。
步骤2:设置模型ID为'aaditya/OpenBioLLM-Llama3-8B'。
步骤3:使用transformers.pipeline创建文本生成管道。
步骤4:定义消息模板,包括系统角色和用户角色的内容。
步骤5:使用pipeline.tokenizer.apply_chat_template应用聊天模板。
步骤6:设置终止符,如eos_token_id和<|eot_id|>。
步骤7:调用pipeline生成文本,设置max_new_tokens、eos_token_id、do_sample、temperature和top_p参数。
步骤8:打印生成的文本。
浏览量:91
最新流量情况
月访问量
23904.81k
平均访问时长
00:04:51
每次访问页数
5.82
跳出率
43.33%
流量来源
直接访问
48.28%
自然搜索
35.88%
邮件
0.03%
外链引荐
12.71%
社交媒体
3.06%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
一款专为生物医学领域设计的开源大型语言模型
OpenBioLLM-8B是由Saama AI Labs开发的先进开源语言模型,专为生物医学领域设计。该模型在大量高质量的生物医学数据上进行了微调,能够理解并生成具有领域特定准确性和流畅性的文字。它在生物医学基准测试中的表现超越了其他类似规模的开源生物医学语言模型,并与更大的专有和开源模型如GPT-3.5和Meditron-70B相比也展现出更好的结果。
基于GPT风格的生物医学语言模型
BioMedLM是由斯坦福大学和DataBricks团队合作开发的基于GPT风格的生物医学语言模型,具有2.7亿参数,通过在生物医学领域的专业知识上训练,可以有效地回答有关医学和生物学的复杂问题。可以在单个A100 GPU上方便地进行微调,并在笔记本电脑上运行推理。在MedMCQA上达到57.3%的得分,在MMLU医学遗传学考试上达到69.0%的得分。产品功能包括生物医学问答系统、患者咨询回答、文献检索与总结、数据隐私与内部部署、模型训练数据的完全记录。BioMedLM已在Hugging Face Hub上公开发布,允许任何人下载并微调模型。
一款基于生物医学数据的8亿参数大型语言模型
Llama-3[8B] Meditron V1.0是一款专为生物医学领域设计的8亿参数的大型语言模型(LLM),在Meta发布Llama-3后24小时内完成微调。该模型在MedQA和MedMCQA等标准基准测试中超越了同参数级别的所有现有开放模型,并且接近70B参数级别医学领域领先的开放模型Llama-2[70B]-Meditron的性能。该工作展示了开放基础模型的创新潜力,是确保资源匮乏地区公平参与访问该技术更大倡议的一部分。
先进的开源生物医学大型语言模型,专为医疗领域设计。
OpenBioLLM-70B是由Saama AI Labs开发的先进开源语言模型,专为生物医学领域设计。该模型在大量高质量的生物医学数据上进行了微调,能够理解和生成具有领域特定准确性和流畅性的文字。它在生物医学基准测试中展示了超越其他类似规模开源生物医学语言模型的优越性能,并且在与更大的专有和开源模型如GPT-4、Gemini、Medtron-70B、Med-PaLM-1和Med-PaLM-2的比较中也展现了更好的结果。
7B参数的大型语言模型,提升自然语言处理能力
OLMo 2 7B是由Allen Institute for AI (Ai2)开发的一款7B参数的大型语言模型,它在多个自然语言处理任务上展现出色的表现。该模型通过在大规模数据集上的训练,能够理解和生成自然语言,支持多种语言模型相关的科研和应用。OLMo 2 7B的主要优点包括其大规模的参数量,使得模型能够捕捉到更加细微的语言特征,以及其开源的特性,促进了学术界和工业界的进一步研究和应用。
基于特定模型的量化大型语言模型,适用于自然语言处理等任务。
该模型是量化版大型语言模型,采用4位量化技术,降低存储与计算需求,适用于自然语言处理,参数量8.03B,免费且可用于非商业用途,适合资源受限环境下高性能语言应用需求者。
生物医学领域的专业通用模型
UltraMedical项目旨在开发生物医学领域的专业通用模型,这些模型旨在回答与考试、临床场景和研究问题相关的问题,同时保持广泛的通用知识基础,以有效处理跨领域问题。通过使用先进的对齐技术,包括监督微调(SFT)、直接偏好优化(DPO)和赔率比偏好优化(ORPO),训练大型语言模型在UltraMedical数据集上,以创建强大且多功能的模型,有效服务于生物医学社区的需求。
自然语言处理模型
LLaMA Pro 是一种用于大规模自然语言处理的模型。通过使用 Transformer 模块的扩展,该模型可以在不遗忘旧知识的情况下,高效而有效地利用新语料库来提升模型的知识。LLaMA Pro 具有出色的性能,在通用任务、编程和数学方面都表现出色。它是基于 LLaMA2-7B 进行初始化的通用模型。LLaMA Pro 和其指导类模型(LLaMA Pro-Instruct)在各种基准测试中均取得了先进的性能,展示了在智能代理中进行推理和处理各种任务的巨大潜力。该模型为将自然语言和编程语言进行整合提供了宝贵的见解,为在各种环境中有效运作的先进语言代理的开发奠定了坚实的基础。
AI自然语言处理模型
Powerups AI是一款基于人工智能技术的自然语言处理模型,具有极高的语言理解和生成能力。该模型可以用于文本生成、语言翻译、对话生成等多个领域,可以帮助用户快速生成高质量的文本内容,提高工作效率。
先进的自然语言处理模型
MiscNinja是一种先进的自然语言处理模型,具有强大的文本生成和理解能力。其优势在于可以应用于多种领域,如智能对话系统、文本摘要、自动翻译等。定价根据使用情况而定,定位于为开发者和企业提供强大的自然语言处理解决方案。
一个完全开源的大型语言模型,提供先进的自然语言处理能力。
MAP-NEO是一个完全开源的大型语言模型,它包括预训练数据、数据处理管道(Matrix)、预训练脚本和对齐代码。该模型从零开始训练,使用了4.5T的英文和中文token,展现出与LLaMA2 7B相当的性能。MAP-NEO在推理、数学和编码等具有挑战性的任务中表现出色,超越了同等规模的模型。为了研究目的,我们致力于实现LLM训练过程的完全透明度,因此我们全面发布了MAP-NEO,包括最终和中间检查点、自训练的分词器、预训练语料库以及高效稳定的优化预训练代码库。
快速构建自然语言处理应用
GradientJ是一个用于测试、部署和管理自然语言处理应用的平台。它基于大型语言模型如GPT-4,提供快速构建NLP应用的能力。用户可以使用GradientJ开发自定义的文本生成、问答系统、聊天机器人等NLP应用。GradientJ提供简单易用的接口和工具,让开发者能够快速上手并实现自己的用例。定价方案灵活,适合个人开发者和企业用户。
处理长文本的大型语言模型
LongLLaMA 是一个大型语言模型,能够处理长篇文本。它基于 OpenLLaMA,并使用 Focused Transformer (FoT) 方法进行了微调。它能够处理长达 256k 标记甚至更多的文本。我们提供了一个较小的 3B 基础模型(未经过指令调整),并在 Hugging Face 上提供了支持更长上下文的推断代码。我们的模型权重可以作为现有实现中 LLaMA 的替代品(适用于最多 2048 个标记的短上下文)。此外,我们还提供了评估结果和与原始 OpenLLaMA 模型的比较。
Mistral是一个开源自然语言处理模型
Mistral是一个小型但强大的开源自然语言处理模型,可适用于多种使用场景。Mistral 7B模型性能优于Llama 2 13B模型,拥有自然的编程能力和8000个序列长度。Mistral采用Apache 2.0许可证发布,易于在任何云端和个人电脑GPU上部署使用。
多语言大型语言模型
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
医学大型语言模型套件
Meditron 是一套开源的医学大型语言模型(LLM)套件。它通过对一份经过综合筛选的医学语料库进行持续预训练,包括选定的 PubMed 论文和摘要、一份新的国际认可的医学指南数据集以及一个通用领域语料库,将 Llama-2 适应到医学领域。Meditron-70B 在相关数据上进行了微调,性能优于 Llama-2-70B、GPT-3.5 和 Flan-PaLM。
强大的语言模型,支持多种自然语言处理任务。
GLM-4-32B 是一个高性能的生成语言模型,旨在处理多种自然语言任务。它通过深度学习技术训练而成,能够生成连贯的文本和回答复杂问题。该模型适用于学术研究、商业应用和开发者,价格合理,定位精准,是自然语言处理领域的领先产品。
先进的多模态大型语言模型
InternVL2_5-2B-MPO是一个多模态大型语言模型系列,展示了卓越的整体性能。该系列基于InternVL2.5和混合偏好优化构建。它集成了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。该模型在多模态任务中表现出色,能够处理包括图像和文本在内的多种数据类型,适用于需要理解和生成多模态内容的场景。
世界顶尖的开源大型语言模型
Reflection Llama-3.1 70B 是目前世界上顶尖的开源大型语言模型(LLM),采用名为 Reflection-Tuning 的新技术进行训练,使模型能够检测其推理中的错误并进行修正。该模型在合成数据上进行了训练,这些数据由 Glaive 生成。对于正在训练模型的用户来说,Glaive 是一个非常出色的工具。该模型使用标准的 Llama 3.1 聊天格式,通过特殊的标签来区分模型的内部思考和最终答案,从而提升用户体验。
大型语言模型的详细列表和信息
Models Table 提供了一个包含300多个大型语言模型的列表,这些模型被所有主要的AI实验室使用,包括Amazon Olympus, OpenAI GPT-5, OpenAI GPT-6等。该列表展示了大型语言模型的发展趋势和多样性,对于AI研究者和开发者来说是一个宝贵的资源。
高效开源的大型语言模型
OLMoE-1B-7B 是一个具有1亿活跃参数和7亿总参数的专家混合型大型语言模型(LLM),于2024年9月发布。该模型在成本相似的模型中表现卓越,与更大的模型如Llama2-13B竞争。OLMoE完全开源,支持多种功能,包括文本生成、模型训练和部署等。
52B参数的开源多语言大型语言模型
Tele-FLM(亦称FLM-2)是一个52亿参数的开源多语言大型语言模型,具有稳定高效的预训练范式和增强的事实判断能力。基于解码器仅变换器架构,已在大约2T的token上进行训练。Tele-FLM在同等规模上展现出优越的性能,有时甚至超越了更大的模型。除了分享模型权重外,我们还提供了核心设计、工程实践和训练细节,期待它们对学术界和工业界社区都有所裨益。
大型语言模型,支持多种参数规模
Meta Llama 3 是 Meta 推出的最新大型语言模型,旨在为个人、创作者、研究人员和各类企业解锁大型语言模型的能力。该模型包含从8B到70B参数的不同规模版本,支持预训练和指令调优。模型通过 GitHub 仓库提供,用户可以通过下载模型权重和分词器进行本地推理。Meta Llama 3 的发布标志着大型语言模型技术的进一步普及和应用,具有广泛的研究和商业潜力。
一种大型语言模型,具有扩展词汇量。
Mistral-7B-v0.3是由Mistral AI团队开发的大型语言模型(Large Language Model, LLM),它是Mistral-7B-v0.2的升级版,具有扩展到32768的词汇量。该模型支持文本生成,适合于需要文本生成能力的应用场景。目前,该模型没有内容审核机制,团队正在寻求社区合作,以实现更精细的内容审核,满足需要内容审核的部署环境。
大型语言模型角色扮演框架
RoleLLM是一个角色扮演框架,用于构建和评估大型语言模型的角色扮演能力。它包括四个阶段:角色概要构建、基于上下文的指令生成、使用GPT进行角色提示和基于角色的指令调整。通过Context-Instruct和RoleGPT,我们创建了RoleBench,这是一个系统化和细粒度的角色级别基准数据集,包含168,093个样本。此外,RoCIT在RoleBench上产生了RoleLLaMA(英语)和RoleGLM(中文),显著提高了角色扮演能力,甚至与使用GPT-4的RoleGPT取得了可比较的结果。
多模态大型语言模型,展示卓越的整体性能
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,基于InternVL2.5和混合偏好优化构建。该模型集成了新增量预训练的InternViT和各种预训练的大型语言模型,如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。它支持多图像和视频数据,并且在多模态任务中表现出色,能够理解和生成与图像相关的文本内容。
开源自然语言生成模型
OLMo是一个开源的自然语言生成模型,由Allen AI研究所开发,基于Transformer架构,可用于生成高质量的英文文本。它具有生成长度可达4096个token的长文本的能力。OLMo-7B是目前公开的参数量最大的开源英文语言模型之一,拥有69亿参数,在多个英文NLP任务上的表现优于同类模型。它可用于文本生成、任务导向的微调等多种自然语言处理任务。
© 2025 AIbase 备案号:闽ICP备08105208号-14