需求人群:
"Tele-FLM主要面向需要处理和生成多语言文本的开发者和研究人员,特别是那些在自然语言处理领域寻求高效、高性能模型的专业人士。"
使用场景示例:
用于生成特定领域的文本摘要。
在问答系统中提供准确的信息检索和回答。
作为聊天机器人的后端,提供流畅的对话体验。
产品特色:
基于变换器架构的解码器仅模型,优化了事实判断能力。
支持多种语言,包括英语和中文。
提供核心设计和工程实践,方便社区使用和学习。
训练数据包含多个领域,覆盖广泛的知识。
采用3D并行训练技术,提高训练效率。
在多个评估基准上展现出良好的性能。
使用教程:
1. 导入torch和transformers库。
2. 使用AutoTokenizer和AutoModelForCausalLM从预训练模型中加载tokenizer和模型。
3. 将输入文本通过tokenizer转换为模型可理解的格式。
4. 将转换后的输入数据传送到模型的设备上。
5. 使用model.generate方法生成文本。
6. 使用tokenizer.decode方法将生成的文本解码回可读格式。
7. 打印最终生成的文本。
浏览量:8
最新流量情况
月访问量
21315.89k
平均访问时长
00:05:02
每次访问页数
5.22
跳出率
45.50%
流量来源
直接访问
49.07%
自然搜索
35.51%
邮件
0.03%
外链引荐
12.37%
社交媒体
3.00%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.90%
印度
8.10%
日本
3.61%
俄罗斯
5.37%
美国
18.06%
52B参数的开源多语言大型语言模型
Tele-FLM(亦称FLM-2)是一个52亿参数的开源多语言大型语言模型,具有稳定高效的预训练范式和增强的事实判断能力。基于解码器仅变换器架构,已在大约2T的token上进行训练。Tele-FLM在同等规模上展现出优越的性能,有时甚至超越了更大的模型。除了分享模型权重外,我们还提供了核心设计、工程实践和训练细节,期待它们对学术界和工业界社区都有所裨益。
7B参数的大型语言模型,提升自然语言处理能力
OLMo 2 7B是由Allen Institute for AI (Ai2)开发的一款7B参数的大型语言模型,它在多个自然语言处理任务上展现出色的表现。该模型通过在大规模数据集上的训练,能够理解和生成自然语言,支持多种语言模型相关的科研和应用。OLMo 2 7B的主要优点包括其大规模的参数量,使得模型能够捕捉到更加细微的语言特征,以及其开源的特性,促进了学术界和工业界的进一步研究和应用。
简单易用,释放AI的强大力量
5ire是一个以简洁和用户友好为核心的AI产品,旨在让即使是初学者也能轻松利用大型语言模型。它支持多种文档格式的解析和向量化,具备本地知识库、使用分析、提示库、书签和快速关键词搜索等功能。作为一个开源项目,5ire提供免费下载,并且提供了按需付费的大型语言模型API服务。
世界顶尖的开源大型语言模型
Reflection Llama-3.1 70B 是目前世界上顶尖的开源大型语言模型(LLM),采用名为 Reflection-Tuning 的新技术进行训练,使模型能够检测其推理中的错误并进行修正。该模型在合成数据上进行了训练,这些数据由 Glaive 生成。对于正在训练模型的用户来说,Glaive 是一个非常出色的工具。该模型使用标准的 Llama 3.1 聊天格式,通过特殊的标签来区分模型的内部思考和最终答案,从而提升用户体验。
高效开源的大型语言模型
OLMoE-1B-7B 是一个具有1亿活跃参数和7亿总参数的专家混合型大型语言模型(LLM),于2024年9月发布。该模型在成本相似的模型中表现卓越,与更大的模型如Llama2-13B竞争。OLMoE完全开源,支持多种功能,包括文本生成、模型训练和部署等。
大型语言模型,支持多语言和代码数据
Mistral-Nemo-Instruct-2407是由Mistral AI和NVIDIA联合训练的大型语言模型(LLM),是Mistral-Nemo-Base-2407的指导微调版本。该模型在多语言和代码数据上进行了训练,显著优于大小相似或更小的现有模型。其主要特点包括:支持多语言和代码数据训练、128k上下文窗口、可替代Mistral 7B。模型架构包括40层、5120维、128头维、1436隐藏维、32个头、8个kv头(GQA)、2^17词汇量(约128k)、旋转嵌入(theta=1M)。该模型在多种基准测试中表现出色,如HellaSwag(0-shot)、Winogrande(0-shot)、OpenBookQA(0-shot)等。
一款专为生物医学领域设计的开源大型语言模型
OpenBioLLM-8B是由Saama AI Labs开发的先进开源语言模型,专为生物医学领域设计。该模型在大量高质量的生物医学数据上进行了微调,能够理解并生成具有领域特定准确性和流畅性的文字。它在生物医学基准测试中的表现超越了其他类似规模的开源生物医学语言模型,并与更大的专有和开源模型如GPT-3.5和Meditron-70B相比也展现出更好的结果。
Qwen1.5系列首个千亿参数开源模型,多语言支持,高效Transformer解码器架构。
Qwen1.5-110B是Qwen1.5系列中规模最大的模型,拥有1100亿参数,支持多语言,采用高效的Transformer解码器架构,并包含分组查询注意力(GQA),在模型推理时更加高效。它在基础能力评估中与Meta-Llama3-70B相媲美,在Chat评估中表现出色,包括MT-Bench和AlpacaEval 2.0。该模型的发布展示了在模型规模扩展方面的巨大潜力,并且预示着未来通过扩展数据和模型规模,可以获得更大的性能提升。
百川智能开发的专为医疗场景优化的开源大语言模型,具备卓越的通用能力和医疗领域性能。
Baichuan-M1-14B 是由百川智能开发的开源大语言模型,专为医疗场景优化。它基于20万亿token的高质量医疗与通用数据训练,覆盖20多个医疗科室,具备强大的上下文理解和长序列任务表现能力。该模型在医疗领域表现出色,同时在通用任务中也达到了同尺寸模型的效果。其创新的模型结构和训练方法使其在医疗推理、病症判断等复杂任务中表现出色,为医疗领域的人工智能应用提供了强大的支持。
DeepSeek-R1-Distill-Qwen-1.5B 是一款高效推理的开源语言模型,适用于多种自然语言处理任务。
DeepSeek-R1-Distill-Qwen-1.5B 是由 DeepSeek 团队开发的开源语言模型,基于 Qwen2.5 系列进行蒸馏优化。该模型通过大规模强化学习和数据蒸馏技术,显著提升了推理能力和性能,同时保持了较小的模型体积。它在多项基准测试中表现出色,尤其在数学、代码生成和推理任务中具有显著优势。该模型支持商业使用,并允许用户进行修改和衍生作品开发,适合研究机构和企业用于开发高性能的自然语言处理应用。
DeepSeek-R1-Distill-Qwen-32B 是一款高性能的开源语言模型,适用于多种文本生成任务。
DeepSeek-R1-Distill-Qwen-32B 是由 DeepSeek 团队开发的高性能语言模型,基于 Qwen-2.5 系列进行蒸馏优化。该模型在多项基准测试中表现出色,尤其是在数学、代码和推理任务上。其主要优点包括高效的推理能力、强大的多语言支持以及开源特性,便于研究人员和开发者进行二次开发和应用。该模型适用于需要高性能文本生成的场景,如智能客服、内容创作和代码辅助等,具有广泛的应用前景。
DeepSeek-R1-Distill-Llama-70B 是一款基于强化学习优化的大型语言模型,专注于推理和对话能力。
DeepSeek-R1-Distill-Llama-70B 是由 DeepSeek 团队开发的一款大型语言模型,基于 Llama-70B 架构并通过强化学习进行优化。该模型在推理、对话和多语言任务中表现出色,支持多种应用场景,包括代码生成、数学推理和自然语言处理。其主要优点是高效的推理能力和对复杂问题的解决能力,同时支持开源和商业使用。该模型适用于需要高性能语言生成和推理能力的企业和研究机构。
DeepSeek-R1 是一款高性能推理模型,支持多种语言和任务,适用于研究和商业应用。
DeepSeek-R1 是 DeepSeek 团队推出的第一代推理模型,通过大规模强化学习训练,无需监督微调即可展现出卓越的推理能力。该模型在数学、代码和推理任务上表现优异,与 OpenAI-o1 模型相当。DeepSeek-R1 还提供了多种蒸馏模型,适用于不同规模和性能需求的场景。其开源特性为研究社区提供了强大的工具,支持商业使用和二次开发。
一个实时适应未见任务的自适应大型语言模型框架。
SakanaAI/self-adaptive-llms是一个名为Transformer²的自适应框架,旨在解决传统微调方法计算密集且处理多样化任务能力静态的挑战。该框架能够在推理过程中通过两步机制实时调整大型语言模型(LLMs)以适应未见任务:首先,调度系统识别任务属性;然后,使用强化学习训练的任务特定'专家'向量被动态混合,以获得针对输入提示的目标行为。主要优点包括实时任务适应性、计算效率和灵活性。该项目由SakanaAI团队开发,目前在GitHub上开源,拥有195颗星和12次分叉。
InternLM3-8B-Instruct是一个开源的80亿参数指令模型,用于通用用途和高级推理。
InternLM3-8B-Instruct是InternLM团队开发的大型语言模型,具有卓越的推理能力和知识密集型任务处理能力。该模型在仅使用4万亿高质量词元进行训练的情况下,实现了比同级别模型低75%以上的训练成本,同时在多个基准测试中超越了Llama3.1-8B和Qwen2.5-7B等模型。它支持深度思考模式,能够通过长思维链解决复杂的推理任务,同时也具备流畅的用户交互能力。该模型基于Apache-2.0许可证开源,适用于需要高效推理和知识处理的各种应用场景。
基于特定模型的量化大型语言模型,适用于自然语言处理等任务。
该模型是量化版大型语言模型,采用4位量化技术,降低存储与计算需求,适用于自然语言处理,参数量8.03B,免费且可用于非商业用途,适合资源受限环境下高性能语言应用需求者。
Sonus-1:开启大型语言模型(LLMs)的新时代
Sonus-1是Sonus AI推出的一系列大型语言模型(LLMs),旨在推动人工智能的边界。这些模型以其高性能和多应用场景的多功能性而设计,包括Sonus-1 Mini、Sonus-1 Air、Sonus-1 Pro和Sonus-1 Pro (w/ Reasoning)等不同版本,以满足不同需求。Sonus-1 Pro (w/ Reasoning)在多个基准测试中表现突出,特别是在推理和数学问题上,展现了其超越其他专有模型的能力。Sonus AI致力于开发高性能、可负担、可靠且注重隐私的大型语言模型。
多模态大型语言模型,展示卓越的整体性能。
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,它基于InternVL2.5和混合偏好优化构建。该模型整合了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL2.5-MPO在新版本中保留了与InternVL 2.5及其前身相同的模型架构,遵循“ViT-MLP-LLM”范式。该模型支持多图像和视频数据,通过混合偏好优化(MPO)进一步提升模型性能,使其在多模态任务中表现更优。
先进的医疗领域大型语言模型
HuatuoGPT-o1-8B 是一个专为高级医疗推理设计的医疗领域大型语言模型(LLM)。它在提供最终响应之前会生成一个复杂的思考过程,反映并完善其推理过程。该模型基于LLaMA-3.1-8B构建,支持英文,并且采用'thinks-before-it-answers'的方法,输出格式包括推理过程和最终响应。此模型在医疗领域具有重要意义,因为它能够处理复杂的医疗问题并提供深思熟虑的答案,这对于提高医疗决策的质量和效率至关重要。
医疗领域复杂推理的大型语言模型
HuatuoGPT-o1是一个专为医疗复杂推理设计的大语言模型,能够识别错误、探索替代策略并完善答案。该模型通过利用可验证的医疗问题和专门的医疗验证器,推进了复杂推理的发展。HuatuoGPT-o1的主要优点包括:使用验证器指导复杂推理轨迹的搜索,以微调大型语言模型;应用基于验证器奖励的强化学习(PPO)进一步提升复杂推理能力。HuatuoGPT-o1的开源模型、数据和代码,使其在医疗教育和研究领域具有重要价值。
自动语音识别工具,提供词级时间戳和说话人识别
BetterWhisperX是一个基于WhisperX改进的自动语音识别模型,它能够提供快速的语音转文字服务,并具备词级时间戳和说话人识别功能。这个工具对于需要处理大量音频数据的研究人员和开发者来说非常重要,因为它可以大幅提高语音数据处理的效率和准确性。产品背景基于OpenAI的Whisper模型,但做了进一步的优化和改进。目前,该项目是免费且开源的,定位于为开发者社区提供更高效、更准确的语音识别工具。
一款高效率的2.4亿参数轻量级语言模型
YuLan-Mini是由中国人民大学AI Box团队开发的一款轻量级语言模型,具有2.4亿参数,尽管仅使用1.08T的预训练数据,但其性能可与使用更多数据训练的行业领先模型相媲美。该模型特别擅长数学和代码领域,为了促进可复现性,团队将开源相关的预训练资源。
多模态大型语言模型,展示卓越的整体性能
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,基于InternVL2.5和混合偏好优化构建。该模型集成了新增量预训练的InternViT和各种预训练的大型语言模型,如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。它支持多图像和视频数据,并且在多模态任务中表现出色,能够理解和生成与图像相关的文本内容。
多模态大型语言模型,提升文本、图像和视频数据处理能力。
Valley是由字节跳动开发的多模态大型模型(MLLM),旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,远超过其他开源模型,并在OpenCompass多模态模型评估排行榜上展现了出色的性能,平均得分67.40,位列已知开源MLLMs(<10B)中的前两名。
一款具有671B参数的Mixture-of-Experts语言模型。
DeepSeek-V3是一个强大的Mixture-of-Experts (MoE) 语言模型,拥有671B的总参数量,每次激活37B参数。它采用了Multi-head Latent Attention (MLA) 和 DeepSeekMoE架构,这些架构在DeepSeek-V2中得到了充分的验证。此外,DeepSeek-V3首次采用了无辅助损失的负载均衡策略,并设置了多令牌预测训练目标,以实现更强大的性能。DeepSeek-V3在14.8万亿高质量令牌上进行了预训练,随后进行了监督式微调和强化学习阶段,以充分利用其能力。综合评估显示,DeepSeek-V3超越了其他开源模型,并达到了与领先的闭源模型相当的性能。尽管性能出色,DeepSeek-V3的完整训练仅需要2.788M H800 GPU小时,并且训练过程非常稳定。
先进的多模态大型语言模型
InternVL2_5-2B-MPO是一个多模态大型语言模型系列,展示了卓越的整体性能。该系列基于InternVL2.5和混合偏好优化构建。它集成了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。该模型在多模态任务中表现出色,能够处理包括图像和文本在内的多种数据类型,适用于需要理解和生成多模态内容的场景。
多模态大型语言模型,提升视觉和语言的综合理解能力
InternVL2_5-1B-MPO是一个多模态大型语言模型(MLLM),它基于InternVL2.5和混合偏好优化(MPO)构建,展示了优越的整体性能。该模型集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL2.5-MPO在模型架构上保留了与InternVL 2.5及其前身相同的“ViT-MLP-LLM”范式,并引入了对多图像和视频数据的支持。该模型在多模态任务中表现出色,能够处理包括图像描述、视觉问答等多种视觉语言任务。
LG AI Research开发的多语言、高性能大型语言模型
EXAONE-3.5-32B-Instruct-GGUF是LG AI Research开发的一系列指令调优的双语(英语和韩语)生成模型,包含2.4B至32B参数的不同版本。这些模型支持长达32K令牌的长上下文处理,展现了在真实世界用例和长上下文理解中的最前沿性能,同时在与近期发布的类似规模模型相比,在通用领域保持竞争力。该模型系列通过技术报告、博客和GitHub提供了详细信息,并且包含了多种精度的指令调优32B语言模型,具有以下特点:参数数量(不含嵌入)为30.95B,层数为64,注意力头数为GQA,包含40个Q头和8个KV头,词汇量为102,400,上下文长度为32,768令牌,量化包括Q8_0、Q6_0、Q5_K_M、Q4_K_M、IQ4_XS等GGUF格式(也包括BF16权重)。
© 2025 AIbase 备案号:闽ICP备08105208号-14