需求人群:
"目标受众为需要在多种语言环境下进行对话生成和理解的开发者和研究人员。此模型尤其适合需要构建多语言聊天机器人、虚拟助手或其他对话系统的用户。"
使用场景示例:
构建一个能够以多种语言进行交流的客服聊天机器人。
开发一个多语言虚拟助手,用于提供信息查询和日常任务管理。
实现一个教育应用,使用该模型进行语言学习辅导和对话练习。
产品特色:
支持8种语言:英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。
基于优化的Transformer架构,使用自回归语言模型。
通过监督式微调和人类反馈的强化学习来对齐人类偏好。
提供静态模型,未来版本将根据社区反馈持续改进模型安全性。
遵守自定义商业许可Llama 3.1社区许可协议。
可用于助手类聊天、自然语言生成任务等多种应用场景。
使用教程:
安装必要的库和依赖,例如Transformers和PyTorch。
加载Meta-Llama-3.1-8B-Instruct模型到适当的环境。
根据需要调整模型参数,例如设置设备映射和数据类型。
准备输入数据,可以是系统消息、用户查询等。
使用模型生成文本或执行特定对话任务。
处理模型输出,根据应用场景进行后续的逻辑处理或展示。
浏览量:66
最新流量情况
月访问量
19075.32k
平均访问时长
00:05:32
每次访问页数
5.52
跳出率
45.07%
流量来源
直接访问
48.31%
自然搜索
36.36%
邮件
0.03%
外链引荐
12.17%
社交媒体
3.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.13%
印度
7.59%
日本
3.67%
俄罗斯
6.13%
美国
18.18%
多语言对话生成模型
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),支持8种语言,专为对话使用案例优化,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)来提高安全性和有用性。
通过角色扮演进行对话的大型语言模型
Peach-9B-8k-Roleplay是一个经过微调的大型语言模型,专门用于角色扮演对话。它基于01-ai/Yi-1.5-9B模型,通过数据合成方法在超过100K的对话上进行训练。尽管模型参数较小,但可能在34B以下参数的语言模型中表现最佳。
70亿参数的大型多语言对话生成模型
Meta Llama 3.1是Meta公司推出的一种大型语言模型,拥有70亿参数,支持8种语言的文本生成和对话。该模型使用优化的Transformer架构,并通过监督微调(SFT)和人类反馈强化学习(RLHF)进行调优,以符合人类对有用性和安全性的偏好。它旨在为商业和研究用途提供支持,特别是在多语言对话场景下表现出色。
多功能中文英文对话模型
Gemma-2-9B-Chinese-Chat是一款基于google/gemma-2-9b-it的指令调整型语言模型,专为中英文用户设计,具备角色扮演和工具使用等多种能力。该模型通过ORPO算法进行微调,显著提升了对中文问题的响应准确性,减少了中英文混合使用的问题,并在角色扮演、工具使用和数学计算方面表现出色。
19亿参数规模的角色扮演模型,支持few shots角色定制。
Index-1.9B-Character是由Index团队自主研发的大型语言模型,专注于角色扮演领域,拥有19亿参数规模。该模型支持用户通过上传角色对话语料实现快速的角色定制,具备较高的角色一致性、对话能力和角色扮演吸引力。在CharacterEval权威benchmark评估中,整体均分排名第九,表现优于同量级模型。
专为角色扮演优化的大型语言模型
Higgs-Llama-3-70B是一个基于Meta-Llama-3-70B的后训练模型,特别针对角色扮演进行了优化,同时在通用领域指令执行和推理方面保持竞争力。该模型通过监督式微调,结合人工标注者和私有大型语言模型构建偏好对,进行迭代偏好优化以对齐模型行为,使其更贴近系统消息。与其它指令型模型相比,Higgs模型更紧密地遵循其角色。
提高LLM选择性预测能力的框架
ASPIRE是一个设计精良的框架,用于增强大型语言模型的选择性预测能力。它通过参数高效的微调训练LLM进行自我评估,使其能够针对生成的答案输出置信度分数。实验结果表明,ASPIRE在各种问答数据集上明显优于目前的选择性预测方法。
增强LLM推理能力的ReFT
ReFT是一种增强大型语言模型(LLMs)推理能力的简单而有效的方法。它首先通过监督微调(SFT)对模型进行预热,然后使用在线强化学习,具体来说是本文中的PPO算法,进一步微调模型。ReFT通过自动对给定问题进行大量推理路径的采样,并从真实答案中自然地得出奖励,从而显著优于SFT。ReFT的性能可能通过结合推理时策略(如多数投票和重新排名)进一步提升。需要注意的是,ReFT通过学习与SFT相同的训练问题而获得改进,而无需依赖额外或增强的训练问题。这表明ReFT具有更强的泛化能力。
增强 LLM 的可用性和安全性
Starling-7B 是一个由强化学习从 AI 反馈(RLAIF)训练的开放大型语言模型(LLM)。它通过我们的新 GPT-4 标记排序数据集 Nectar 和新的奖励训练和策略调优流程充分发挥了作用。Starling-7B 在使用 GPT-4 作为评委的 MT Bench 中得分为 8.09,在 MT-Bench 上超过了目前所有模型,除了 OpenAI 的 GPT-4 和 GPT-4 Turbo。我们在 HuggingFace 上发布了排名数据集 Nectar、奖励模型 Starling-RM-7B-alpha 和语言模型 Starling-LM-7B-alpha,以及 LMSYS Chatbot Arena 中的在线演示。请期待我们即将发布的代码和论文,其中将提供有关整个过程的更多详细信息。
人类级奖励设计算法,通过编码大型语言模型实现
Eureka是一种人类级奖励设计算法,通过编码大型语言模型实现。它利用最先进的语言模型(如GPT-4)的零样本生成、编写代码和上下文改进能力,对奖励代码进行进化优化。生成的奖励可以用于通过强化学习获得复杂的技能。Eureka生成的奖励函数在29个开源强化学习环境中,包括10种不同的机器人形态,优于人类专家设计的奖励函数。Eureka还能够灵活地改进奖励函数,以提高生成奖励的质量和安全性。通过与课程学习相结合,使用Eureka奖励函数,我们首次展示了一个模拟的Shadow Hand能够进行旋转笔的技巧,熟练地以快速的速度在圆圈中操纵笔。
统一的开放命名实体和语音识别模型
WhisperNER是一个结合了自动语音识别(ASR)和命名实体识别(NER)的统一模型,具备零样本能力。该模型旨在作为ASR带NER的下游任务的强大基础模型,并可以在特定数据集上进行微调以提高性能。WhisperNER的重要性在于其能够同时处理语音识别和实体识别任务,提高了处理效率和准确性,尤其在多语言和跨领域的场景中具有显著优势。
AI视频翻译、配音和唇形同步工具
Vozo Video Translator是一款利用人工智能技术提供视频翻译、配音和唇形同步服务的产品。它通过精确的AI翻译技术,结合背景知识,提供定制化、符合语境的翻译,适应用户的风格和语调偏好,确保翻译结果自然流畅。Vozo Video Translator的主要优点包括准确的语境翻译、AI驱动的校对和润色、真实的语音克隆和情感保留、以及多语种的唇形同步技术。产品背景信息显示,Vozo Video Translator支持多种语言的翻译,适用于全球市场,价格方面,新用户可以获得30积分的免费试用,之后可以根据需要升级计划。
123B参数的大型语言模型,具备先进推理和编码能力。
Mistral-Large-Instruct-2411是由Mistral AI提供的一款具有123B参数的大型语言模型,它在推理、知识、编码等方面具有最先进的能力。该模型支持多种语言,并在80多种编程语言上进行了训练,包括但不限于Python、Java、C、C++等。它以代理为中心,具备原生函数调用和JSON输出能力,是进行科研和开发的理想选择。
数据驱动的框架,增强大型语言模型的工作流编排能力
WorkflowLLM是一个以数据为中心的框架,旨在增强大型语言模型(LLMs)在工作流编排方面的能力。核心是WorkflowBench,这是一个大规模的监督式微调数据集,包含来自83个应用、28个类别的1503个API的106763个样本。WorkflowLLM通过微调Llama-3.1-8B模型,创建了专门针对工作流编排任务优化的WorkflowLlama模型。实验结果表明,WorkflowLlama在编排复杂工作流方面表现出色,并且能够很好地泛化到未见过的API。
下一代语音AI,打造自然沟通的AI语音代理。
Ultravox.ai是一个先进的语音语言模型(SLM),直接处理语音,无需转换为文本,实现更自然、流畅的对话。它支持多语言,易于适应新语言或口音,确保与不同受众的顺畅沟通。产品背景信息显示,Ultravox.ai是一个开源模型,用户可以根据自己的需求进行定制和部署,价格为每分钟5美分。
将书籍转化为有声书,脚本转化为播客的全面工作流程
ElevenLabs Projects 是一个专注于长音频内容制作的平台,它允许用户将书籍和脚本转换成有声书和播客。该产品支持多种文件格式,拥有广泛的语音库,并提供情感范围和上下文适应的AI语音技术。它还提供了一系列高级功能,如多语言支持、特定文本片段的语音分配和片段编辑。ElevenLabs Projects 以其高质量的AI音频技术,帮助创作者和企业在全球范围内传播他们的故事。
大型多模态模型,集成表格数据
TableGPT2是一个大型多模态模型,专门针对表格数据进行预训练和微调,以解决实际应用中表格数据整合不足的问题。该模型在超过593.8K的表格和2.36M的高质量查询-表格-输出元组上进行了预训练和微调,规模前所未有。TableGPT2的关键创新之一是其新颖的表格编码器,专门设计用于捕获模式级别和单元格级别的信息,增强了模型处理模糊查询、缺失列名和不规则表格的能力。在23个基准测试指标上,TableGPT2在7B模型上平均性能提升了35.20%,在72B模型上提升了49.32%,同时保持了强大的通用语言和编码能力。
专为软件改进设计的开源大型语言模型。
Lingma SWE-GPT是一个开源的大型语言模型,专注于软件工程领域的任务,旨在提供智能化的开发支持。该模型基于Qwen系列基础模型,经过额外训练以增强其在复杂软件工程任务中的能力。它在软件工程智能代理的权威排行榜上表现出色,适合需要自动化软件改进的开发团队和研究人员。
人类中心语言模型和模拟器的领导者
Nous Research专注于开发以人为中心的语言模型和模拟器,致力于将AI系统与现实世界用户体验对齐。我们的主要研究领域包括模型架构、数据合成、微调和推理。我们优先开发开源、人类兼容的模型,挑战传统的封闭模型方法。
Jumper是一个强大的AI视频搜索工具,帮助编辑者快速找到视频素材。
Jumper是一个专为视频编辑者设计的AI搜索工具,它能够让用户在眨眼间搜索自己的视频素材。Jumper集成到了用户的非线性编辑器(NLE)中,无需离开编辑工作流程即可找到所需素材。Jumper支持多语言搜索,能够快速定位特定词汇或短语在视频中的位置,支持多机位和同步剪辑,并且完全在设备上运行,保护用户隐私,无需上传素材至云端。Jumper的主要优点包括快速搜索、完全离线工作、保护隐私和兼容性强。产品背景信息显示,Jumper由Witchcraft Software AB开发,旨在通过AI技术提高视频编辑的效率和创造力。
AI内容审核服务,保护下游部署安全。
Mistral Moderation API是Mistral AI推出的内容审核服务,旨在帮助用户检测和过滤不受欢迎的文本内容。该API是Le Chat中使用的审核服务的同一技术,现在对外开放,以便用户可以根据特定的应用和安全标准定制和使用这一工具。该模型是一个基于LLM(大型语言模型)的分类器,能够将文本输入分类到9个预定义的类别中。Mistral AI的这一API支持原生多语言,特别针对阿拉伯语、中文、英语、法语、德语、意大利语、日语、韩语、葡萄牙语、俄语和西班牙语进行了训练。该API的主要优点包括提高审核的可扩展性和鲁棒性,以及通过技术文档提供的详细政策定义和启动指南,帮助用户有效实施系统级的安全防护。
语鲸,智能语言处理平台
语鲸是一个专注于语言处理的平台,它利用先进的自然语言处理技术,为用户提供文本分析、翻译、校对等服务。产品背景信息显示,语鲸旨在帮助用户提高写作效率和质量,特别是在多语言环境中。语鲸的价格定位尚未明确,但考虑到其提供的服务,可能会有免费试用和付费版本。
简单易用,释放AI的强大力量
5ire是一个以简洁和用户友好为核心的AI产品,旨在让即使是初学者也能轻松利用大型语言模型。它支持多种文档格式的解析和向量化,具备本地知识库、使用分析、提示库、书签和快速关键词搜索等功能。作为一个开源项目,5ire提供免费下载,并且提供了按需付费的大型语言模型API服务。
下一代AI作业助手,免费获取作业答案
AI Homeworkify是一个基于人工智能的在线问答平台,旨在帮助学生通过提供详细的答案和解题步骤来学习和理解各种学术问题。该平台不涉及版权侵犯,注重教育平等,提供免费、即时的作业帮助,支持多种学科和语言。AI Homeworkify的主要优点包括完全免费、无需注册、即时答案、全天候服务、多设备兼容、隐私保护和逐步解决方案。产品背景信息显示,AI Homeworkify致力于通过技术手段减少教育不平等,为全球学生提供免费的优质学习辅助服务。
AI驱动的商业与学术写作助手
PaperGen是一个利用人工智能技术帮助用户生成结构良好的长篇论文和报告的平台。它通过提供完全引用的参考文献、自动生成的图表和图形、以及绕过AI检测的原创写作体验,确保内容的原创性、清晰度和精确度。PaperGen的主要优点包括提高写作效率、保证内容质量、以及节省用户在文献搜索和引用上的时间。产品背景信息显示,PaperGen被全球的大学和企业所信赖,适合需要撰写学术论文、案例研究、文献综述、博客文章和研究报告的用户。价格方面,PaperGen提供多种订阅计划,包括免费计划和其他付费计划,满足不同用户的需求。
用AI记录会议并总结,提升工作效率。
Sona是一款能够记录、转录、总结和聊天的应用程序,它通过捕捉对话并提供最重要的见解来提升用户的工作效率。Sona可以在多种设备上使用,包括Apple Watch、iPhone和桌面客户端,支持99种语言,让用户无论在何种语言环境下都能进行对话记录和总结。产品的主要优点包括无缝捕捉对话、智能总结、继续对话、多语言支持以及在后台工作,不干扰会议。Sona的定位是帮助用户在会议和日常对话中捕捉重要信息,避免遗漏关键细节。
开源的网页自动化库,支持任何大型语言模型(LLM)
browser-use是一个开源的网页自动化库,允许大型语言模型(LLM)与网站进行交互,通过简单的接口实现复杂的网页操作。该技术的主要优点包括对多种语言模型的通用支持、交互元素自动检测、多标签页管理、XPath提取、视觉模型支持等。它解决了传统网页自动化中的一些痛点,如动态内容处理、长任务解决等。browser-use以其灵活性和易用性,为开发者提供了一个强大的工具,以构建更加智能和自动化的网页交互体验。
一款通过纯语言模型实现的文本到语音合成模型
OuteTTS-0.1-350M是一款基于纯语言模型的文本到语音合成技术,它不需要外部适配器或复杂架构,通过精心设计的提示和音频标记实现高质量的语音合成。该模型基于LLaMa架构,使用350M参数,展示了直接使用语言模型进行语音合成的潜力。它通过三个步骤处理音频:使用WavTokenizer进行音频标记化、CTC强制对齐创建精确的单词到音频标记映射、以及遵循特定格式的结构化提示创建。OuteTTS的主要优点包括纯语言建模方法、声音克隆能力、与llama.cpp和GGUF格式的兼容性。
交互式对话AI模型,提供问答和文本生成服务
ChatGPT是由OpenAI训练的对话生成模型,能够以对话形式与人互动,回答后续问题,承认错误,挑战错误的前提,并拒绝不适当的请求。OpenAI日前买下了http://chat.com域名,该域名已经指向了ChatGPT。ChatGPT它是InstructGPT的姊妹模型,后者被训练以遵循提示中的指令并提供详细的回答。ChatGPT代表了自然语言处理技术的最新进展,其重要性在于能够提供更加自然和人性化的交互体验。产品背景信息包括其在2022年11月30日的发布,以及在研究预览期间免费提供给用户使用。
世界上最快的文本到语音模型
Lightning是由smallest.ai开发的最新文本到语音模型,以其超快速度和小巧的体积在多模态AI中突破了性能和尺寸的界限。该模型支持英语和印地语等多种口音,并计划迅速扩展更多语言。Lightning的非自回归架构使其能够同时合成整个音频剪辑,与传统的自回归模型相比,后者需要逐步生成音频。Lightning的主要优点包括生成速度快、模型体积小、支持多语言和快速适应新数据。产品背景信息显示,Lightning的推出旨在帮助语音机器人公司大幅降低延迟和成本,通过简化其架构。价格方面,Lightning的定价从每分钟0.04美元起,对于每月使用超过100,000分钟的企业客户,提供定制定价方案。
© 2024 AIbase 备案号:闽ICP备08105208号-14