业界首个超大规模混合 Mamba 推理模型,强推理能力。
混元T1 是腾讯推出的超大规模推理模型,基于强化学习技术,通过大量后训练显著提升推理能力。它在长文处理和上下文捕捉上表现突出,同时优化了计算资源的消耗,具备高效的推理能力。适用于各类推理任务,尤其在数学、逻辑推理等领域表现优异。该产品以深度学习为基础,结合实际反馈不断优化,适合科研、教育等多个领域的应用。
DeepSeek-R1-Distill-Qwen-7B 是一个开源的推理模型,专注于数学、代码和推理任务。
DeepSeek-R1-Distill-Qwen-7B 是一个经过强化学习优化的推理模型,基于 Qwen-7B 进行了蒸馏优化。它在数学、代码和推理任务上表现出色,能够生成高质量的推理链和解决方案。该模型通过大规模强化学习和数据蒸馏技术,显著提升了推理能力和效率,适用于需要复杂推理和逻辑分析的场景。
展示小型语言模型通过自我演化深度思考掌握数学推理能力的研究成果。
rStar-Math是一项研究,旨在证明小型语言模型(SLMs)能够在不依赖于更高级模型的情况下,与OpenAI的o1模型相媲美甚至超越其数学推理能力。该研究通过蒙特卡洛树搜索(MCTS)实现“深度思考”,其中数学策略SLM在基于SLM的流程奖励模型的指导下进行测试时搜索。rStar-Math引入了三种创新方法来应对训练两个SLM的挑战,通过4轮自我演化和数百万个合成解决方案,将SLMs的数学推理能力提升到最先进水平。该模型在MATH基准测试中显著提高了性能,并在AIME竞赛中表现优异。
Eurus-2-7B-SFT是一个经过数学能力优化的大型语言模型,专注于推理和问题解决.
Eurus-2-7B-SFT是基于Qwen2.5-Math-7B模型进行微调的大型语言模型,专注于数学推理和问题解决能力的提升。该模型通过模仿学习(监督微调)的方式,学习推理模式,能够有效解决复杂的数学问题和编程任务。其主要优点在于强大的推理能力和对数学问题的准确处理,适用于需要复杂逻辑推理的场景。该模型由PRIME-RL团队开发,旨在通过隐式奖励的方式提升模型的推理能力。
视觉推理能力增强的实验性研究模型
QVQ-72B-Preview是由Qwen团队开发的实验性研究模型,专注于增强视觉推理能力。该模型在多学科理解和推理方面展现出强大的能力,特别是在数学推理任务上取得了显著的进步。尽管在视觉推理方面取得了进步,但QVQ并不完全取代Qwen2-VL-72B的能力,在多步视觉推理中可能会逐渐失去对图像内容的关注,导致幻觉。此外,QVQ在基本识别任务上并没有显示出比Qwen2-VL-72B更显著的改进。
O1复制之旅:战略进展报告第一部分
O1-Journey是由上海交通大学GAIR研究组发起的一个项目,旨在复制和重新想象OpenAI的O1模型的能力。该项目提出了“旅程学习”的新训练范式,并构建了首个成功整合搜索和学习在数学推理中的模型。这个模型通过试错、纠正、回溯和反思等过程,成为处理复杂推理任务的有效方法。
7B规模的数学推理和科学发现模型
MathΣtral是一款为数学推理和科学发现而设计的7B规模的AI模型,拥有32k的上下文窗口,发布于Apache 2.0许可下。它在多步复杂逻辑推理的高级数学问题上展现出卓越的性能,是Mistral AI团队为科学界贡献的成果,旨在加强学术项目的支持。MathΣtral在STEM领域具有专业特长,其推理能力在同类规模模型中达到了行业标准基准的前沿水平。
© 2025 AIbase 备案号:闽ICP备08105208号-14