需求人群:
"目标受众为需要在多种语言环境下进行文本生成的开发者和研究人员。无论是构建聊天机器人、语言翻译服务还是多语言内容创作,Meta Llama 3.1都能提供强大的语言理解和生成能力,帮助他们实现更加丰富和准确的自然语言处理应用。"
使用场景示例:
用于构建一个多语言的聊天机器人,提供实时语言翻译和对话服务。
作为内容创作工具,帮助生成不同语言的新闻文章或社交媒体帖子。
在多语言编程教育平台中,提供代码生成和解释服务,帮助用户更好地理解编程概念。
产品特色:
支持8种语言的文本生成,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。
采用Grouped-Query Attention (GQA)技术,提高推理扩展性。
经过监督式微调(SFT)和人类反馈强化学习(RLHF),以提高模型的有用性和安全性。
优化的Transformer架构,为多语言对话使用案例提供了高性能。
静态模型,基于2023年12月之前的数据集进行训练。
遵循Llama 3.1社区许可协议,允许商业和研究用途。
使用教程:
1. 访问Hugging Face模型库并搜索'Meta-Llama-3.1-70B'模型。
2. 根据需要的应用程序场景,选择使用transformers库或原始llama代码库。
3. 使用pip命令更新transformers库到最新版本。
4. 导入transformers库并加载模型,设置适当的参数,如使用'torch.bfloat16'数据类型和自动设备映射。
5. 通过调用模型的generate()函数,输入文本提示并获取生成的文本。
6. 根据反馈调整模型参数,优化文本生成结果。
7. 将模型集成到最终的应用程序中,实现多语言文本生成功能。
浏览量:103
最新流量情况
月访问量
25296.55k
平均访问时长
00:04:45
每次访问页数
5.83
跳出率
43.31%
流量来源
直接访问
48.39%
自然搜索
35.85%
邮件
0.03%
外链引荐
12.76%
社交媒体
2.96%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
多语言大型语言模型,支持多领域文本生成。
XVERSE-MoE-A36B是由深圳元象科技自主研发的多语言大型语言模型,采用混合专家模型(MoE)架构,具有2554亿的总参数规模和360亿的激活参数量。该模型支持包括中、英、俄、西等40多种语言,特别在中英双语上表现优异。模型使用8K长度的训练样本,并通过精细化的数据采样比例和动态数据切换策略,保证了模型的高质量和多样性。此外,模型还针对MoE架构进行了定制优化,提升了计算效率和整体吞吐量。
多语言大型语言模型,优化对话和文本生成。
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B三种大小的模型,专门针对多语言对话使用案例进行了优化,并在行业基准测试中表现优异。该模型使用优化的transformer架构,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)进一步与人类偏好对齐,以确保其有用性和安全性。
70亿参数的大型多语言文本生成模型
Meta Llama 3.1是Meta公司推出的大型语言模型,拥有70亿个参数,支持8种语言的文本生成。该模型采用优化的Transformer架构,并通过监督式微调和人类反馈强化学习进一步优化,以符合人类对帮助性和安全性的偏好。模型在多语言对话使用案例中表现优异,超越了许多现有的开源和封闭聊天模型。
70亿参数的多语言大型语言模型
Llama-3.3-70B-Instruct是由Meta开发的一个70亿参数的大型语言模型,专门针对多语言对话场景进行了优化。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来提高其有用性和安全性。它支持多种语言,并能够处理文本生成任务,是自然语言处理领域的一项重要技术。
大型语言模型,支持多语言和编程语言文本生成。
Nemotron-4-340B-Base是由NVIDIA开发的大型语言模型,拥有3400亿参数,支持4096个token的上下文长度,适用于生成合成数据,帮助研究人员和开发者构建自己的大型语言模型。模型经过9万亿token的预训练,涵盖50多种自然语言和40多种编程语言。NVIDIA开放模型许可允许商业使用和派生模型的创建与分发,不声明对使用模型或派生模型生成的任何输出拥有所有权。
多语言大型语言模型
Llama-3.2-1B是由Meta公司发布的多语言大型语言模型,专注于文本生成任务。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)进行调优,以符合人类对有用性和安全性的偏好。该模型支持8种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语,并在多种对话使用案例中表现优异。
轻量级、多语言的先进文本生成模型
Phi-3.5-mini-instruct 是微软基于高质量数据构建的轻量级、多语言的先进文本生成模型。它专注于提供高质量的推理密集型数据,支持128K的token上下文长度,经过严格的增强过程,包括监督式微调、近端策略优化和直接偏好优化,确保精确的指令遵循和强大的安全措施。
7B参数的多语言文本生成模型
CohereForAI/c4ai-command-r7b-12-2024是一个7B参数的多语言模型,专注于推理、总结、问答和代码生成等高级任务。该模型支持检索增强生成(RAG)和工具使用,能够使用和组合多个工具来完成更复杂的任务。它在企业相关的代码用例上表现优异,支持23种语言。
多语言大型语言模型
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
多语言大型语言模型,支持23种语言
Aya Expanse是一个具有高级多语言能力的开放权重研究模型。它专注于将高性能的预训练模型与Cohere For AI一年的研究成果相结合,包括数据套利、多语言偏好训练、安全调整和模型合并。该模型是一个强大的多语言大型语言模型,服务于23种语言,包括阿拉伯语、中文(简体和繁体)、捷克语、荷兰语、英语、法语、德语、希腊语、希伯来语、印地语、印尼语、意大利语、日语、韩语、波斯语、波兰语、葡萄牙语、罗马尼亚语、俄语、西班牙语、土耳其语、乌克兰语和越南语。
大型语言模型,高效文本生成。
InternLM2.5-7B-Chat GGUF是一个大型语言模型,专为文本生成而设计。它基于开源框架llama.cpp,支持多种硬件平台的本地和云推理。该模型具有7.74亿参数,采用先进的架构设计,能够提供高质量的文本生成服务。
多语言大型语言模型,优化对话场景。
Meta Llama 3.1是一系列多语言的大型预训练和指令调整的生成模型,包含8B、70B和405B大小的版本。这些模型专为多语言对话用例而优化,并在常见行业基准测试中表现优于许多开源和闭源聊天模型。模型使用优化的transformer架构,并通过监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调整,以符合人类对有用性和安全性的偏好。
多语言生成语言模型
Aya模型是一个大规模的多语言生成性语言模型,能够在101种语言中遵循指令。该模型在多种自动和人类评估中优于mT0和BLOOMZ,尽管它覆盖的语言数量是后者的两倍。Aya模型使用包括xP3x、Aya数据集、Aya集合、DataProvenance集合的一个子集和ShareGPT-Command等多个数据集进行训练,并在Apache-2.0许可下发布,以推动多语言技术的发展。
8B参数的大型多语言生成模型
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B大小的版本,支持8种语言,专为多语言对话用例优化,并在行业基准测试中表现优异。Llama 3.1模型采用自回归语言模型,使用优化的Transformer架构,并通过监督式微调(SFT)和强化学习结合人类反馈(RLHF)来提高模型的有用性和安全性。
多语言大型语言模型,支持23种语言
Aya Expanse 32B是由Cohere For AI开发的多语言大型语言模型,拥有32亿参数,专注于提供高性能的多语言支持。它结合了先进的数据仲裁、多语言偏好训练、安全调整和模型合并技术,以支持23种语言,包括阿拉伯语、中文(简体和繁体)、捷克语、荷兰语、英语、法语、德语、希腊语、希伯来语、印地语、印尼语、意大利语、日语、韩语、波斯语、波兰语、葡萄牙语、罗马尼亚语、俄语、西班牙语、土耳其语、乌克兰语和越南语。该模型的发布旨在使社区基础的研究工作更加易于获取,通过发布高性能的多语言模型权重,供全球研究人员使用。
多语言对话生成模型
Meta Llama 3.1系列模型是一套预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B三种规模的模型,专为多语言对话使用案例优化,性能优于许多开源和闭源聊天模型。
轻量级、多语言的AI模型,支持长文本生成和推理。
Phi-3.5-MoE-instruct是由微软开发的轻量级、多语言的AI模型,基于高质量、推理密集型数据构建,支持128K的上下文长度。该模型经过严格的增强过程,包括监督式微调、近端策略优化和直接偏好优化,以确保精确的指令遵循和强大的安全措施。它旨在加速语言和多模态模型的研究,作为生成性AI功能的构建模块。
大型多语言预训练语言模型
Meta Llama 3.1-405B 是由 Meta 开发的一系列大型多语言预训练语言模型,包含8B、70B和405B三种规模的模型。这些模型经过优化的变压器架构,使用监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调优,以符合人类对帮助性和安全性的偏好。Llama 3.1 模型支持多种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。该模型在多种自然语言生成任务中表现出色,并在行业基准测试中超越了许多现有的开源和封闭聊天模型。
52B参数的开源多语言大型语言模型
Tele-FLM(亦称FLM-2)是一个52亿参数的开源多语言大型语言模型,具有稳定高效的预训练范式和增强的事实判断能力。基于解码器仅变换器架构,已在大约2T的token上进行训练。Tele-FLM在同等规模上展现出优越的性能,有时甚至超越了更大的模型。除了分享模型权重外,我们还提供了核心设计、工程实践和训练细节,期待它们对学术界和工业界社区都有所裨益。
大型语言模型,支持多语言和代码数据
Mistral-Nemo-Instruct-2407是由Mistral AI和NVIDIA联合训练的大型语言模型(LLM),是Mistral-Nemo-Base-2407的指导微调版本。该模型在多语言和代码数据上进行了训练,显著优于大小相似或更小的现有模型。其主要特点包括:支持多语言和代码数据训练、128k上下文窗口、可替代Mistral 7B。模型架构包括40层、5120维、128头维、1436隐藏维、32个头、8个kv头(GQA)、2^17词汇量(约128k)、旋转嵌入(theta=1M)。该模型在多种基准测试中表现出色,如HellaSwag(0-shot)、Winogrande(0-shot)、OpenBookQA(0-shot)等。
专注长文本、多语言、垂直化
达观 “曹植” 大模型是专注于长文本、多语言、垂直化发展的国产大语言模型。具有自动化写作、翻译、专业性报告写作能力,支持多语言应用和垂直行业定制。可提供高质量文案撰写服务,广泛适用于各行业,是解决企业实际问题的智能工具。
12B参数的大型语言模型
Mistral-Nemo-Base-2407是由Mistral AI和NVIDIA联合训练的12B参数大型预训练生成文本模型。该模型在多语言和代码数据上进行了训练,显著优于相同或更小规模的现有模型。其主要特点包括:Apache 2.0许可证发布,支持预训练和指令版本,128k上下文窗口训练,支持多种语言和代码数据,是Mistral 7B的替代品。模型架构包括40层、5120维、128头维、14364隐藏维、32头数、8个kv头(GQA)、词汇量约128k、旋转嵌入(theta=1M)。该模型在多个基准测试中表现出色,如HellaSwag、Winogrande、OpenBookQA等。
基于大型语言模型的文本生成工具
TextSynth是一个基于大型语言模型的文本生成工具。它使用Falcon 7B和Llama2 7B等先进的语言模型,可以帮助用户完成文本的自动补全和生成。无论是写作、聊天还是翻译,TextSynth都能提供准确、流畅的文本输出。它支持多种语言和领域,具有强大的功能和灵活的参数设置。TextSynth是提高生产力和创造力的理想工具。
多语言指令微调的大型语言模型
Aya-23-8B是由Cohere For AI开发的指令微调模型,具有23种语言的强大多语言能力,专注于将高性能预训练模型与Aya Collection结合,为研究人员提供高性能的多语言模型。
70亿参数的大型多语言对话生成模型
Meta Llama 3.1是Meta公司推出的一种大型语言模型,拥有70亿参数,支持8种语言的文本生成和对话。该模型使用优化的Transformer架构,并通过监督微调(SFT)和人类反馈强化学习(RLHF)进行调优,以符合人类对有用性和安全性的偏好。它旨在为商业和研究用途提供支持,特别是在多语言对话场景下表现出色。
1T开源多语言大型语言模型
Tele-FLM-1T是一个开源的1T多语言大型语言模型,基于解码器仅Transformer架构,经过约2T tokens的训练。该模型在规模上展现出卓越的性能,有时甚至超越了更大的模型。除了分享模型权重外,还提供了核心设计、工程实践和训练细节,期待对学术和工业社区都有所裨益。
多语言模型问答助手
Snack AI是一款多语言模型问答助手,可以同时向多个语言模型提问并获取答案。它能够帮助用户快速获取准确的信息,并提供丰富的功能和使用场景。Snack AI的定价灵活多样,适合个人用户和企业用户的不同需求。
多语言对话生成模型
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),支持8种语言,专为对话使用案例优化,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)来提高安全性和有用性。
LG AI Research开发的多语言、高性能大型语言模型
EXAONE-3.5-32B-Instruct-GGUF是LG AI Research开发的一系列指令调优的双语(英语和韩语)生成模型,包含2.4B至32B参数的不同版本。这些模型支持长达32K令牌的长上下文处理,展现了在真实世界用例和长上下文理解中的最前沿性能,同时在与近期发布的类似规模模型相比,在通用领域保持竞争力。该模型系列通过技术报告、博客和GitHub提供了详细信息,并且包含了多种精度的指令调优32B语言模型,具有以下特点:参数数量(不含嵌入)为30.95B,层数为64,注意力头数为GQA,包含40个Q头和8个KV头,词汇量为102,400,上下文长度为32,768令牌,量化包括Q8_0、Q6_0、Q5_K_M、Q4_K_M、IQ4_XS等GGUF格式(也包括BF16权重)。
© 2025 AIbase 备案号:闽ICP备08105208号-14