需求人群:
"目标受众为需要在多种语言环境下进行文本生成的开发者和研究人员。无论是构建聊天机器人、语言翻译服务还是多语言内容创作,Meta Llama 3.1都能提供强大的语言理解和生成能力,帮助他们实现更加丰富和准确的自然语言处理应用。"
使用场景示例:
用于构建一个多语言的聊天机器人,提供实时语言翻译和对话服务。
作为内容创作工具,帮助生成不同语言的新闻文章或社交媒体帖子。
在多语言编程教育平台中,提供代码生成和解释服务,帮助用户更好地理解编程概念。
产品特色:
支持8种语言的文本生成,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。
采用Grouped-Query Attention (GQA)技术,提高推理扩展性。
经过监督式微调(SFT)和人类反馈强化学习(RLHF),以提高模型的有用性和安全性。
优化的Transformer架构,为多语言对话使用案例提供了高性能。
静态模型,基于2023年12月之前的数据集进行训练。
遵循Llama 3.1社区许可协议,允许商业和研究用途。
使用教程:
1. 访问Hugging Face模型库并搜索'Meta-Llama-3.1-70B'模型。
2. 根据需要的应用程序场景,选择使用transformers库或原始llama代码库。
3. 使用pip命令更新transformers库到最新版本。
4. 导入transformers库并加载模型,设置适当的参数,如使用'torch.bfloat16'数据类型和自动设备映射。
5. 通过调用模型的generate()函数,输入文本提示并获取生成的文本。
6. 根据反馈调整模型参数,优化文本生成结果。
7. 将模型集成到最终的应用程序中,实现多语言文本生成功能。
浏览量:77
最新流量情况
月访问量
19075.32k
平均访问时长
00:05:32
每次访问页数
5.52
跳出率
45.07%
流量来源
直接访问
48.31%
自然搜索
36.36%
邮件
0.03%
外链引荐
12.17%
社交媒体
3.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.13%
印度
7.59%
日本
3.67%
俄罗斯
6.13%
美国
18.18%
70亿参数的大型多语言文本生成模型
Meta Llama 3.1是Meta公司推出的大型语言模型,拥有70亿个参数,支持8种语言的文本生成。该模型采用优化的Transformer架构,并通过监督式微调和人类反馈强化学习进一步优化,以符合人类对帮助性和安全性的偏好。模型在多语言对话使用案例中表现优异,超越了许多现有的开源和封闭聊天模型。
多语言大型语言模型
Llama-3.2-1B是由Meta公司发布的多语言大型语言模型,专注于文本生成任务。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)进行调优,以符合人类对有用性和安全性的偏好。该模型支持8种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语,并在多种对话使用案例中表现优异。
多语言大型语言模型,支持多领域文本生成。
XVERSE-MoE-A36B是由深圳元象科技自主研发的多语言大型语言模型,采用混合专家模型(MoE)架构,具有2554亿的总参数规模和360亿的激活参数量。该模型支持包括中、英、俄、西等40多种语言,特别在中英双语上表现优异。模型使用8K长度的训练样本,并通过精细化的数据采样比例和动态数据切换策略,保证了模型的高质量和多样性。此外,模型还针对MoE架构进行了定制优化,提升了计算效率和整体吞吐量。
轻量级、多语言的先进文本生成模型
Phi-3.5-mini-instruct 是微软基于高质量数据构建的轻量级、多语言的先进文本生成模型。它专注于提供高质量的推理密集型数据,支持128K的token上下文长度,经过严格的增强过程,包括监督式微调、近端策略优化和直接偏好优化,确保精确的指令遵循和强大的安全措施。
8B参数的大型多语言生成模型
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B大小的版本,支持8种语言,专为多语言对话用例优化,并在行业基准测试中表现优异。Llama 3.1模型采用自回归语言模型,使用优化的Transformer架构,并通过监督式微调(SFT)和强化学习结合人类反馈(RLHF)来提高模型的有用性和安全性。
数据驱动的框架,增强大型语言模型的工作流编排能力
WorkflowLLM是一个以数据为中心的框架,旨在增强大型语言模型(LLMs)在工作流编排方面的能力。核心是WorkflowBench,这是一个大规模的监督式微调数据集,包含来自83个应用、28个类别的1503个API的106763个样本。WorkflowLLM通过微调Llama-3.1-8B模型,创建了专门针对工作流编排任务优化的WorkflowLlama模型。实验结果表明,WorkflowLlama在编排复杂工作流方面表现出色,并且能够很好地泛化到未见过的API。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
Hermes系列的最新版大型语言模型
Hermes 3是Nous Research公司推出的Hermes系列最新版大型语言模型(LLM),相较于Hermes 2,它在代理能力、角色扮演、推理、多轮对话、长文本连贯性等方面都有显著提升。Hermes系列模型的核心理念是将LLM与用户对齐,赋予终端用户强大的引导能力和控制权。Hermes 3在Hermes 2的基础上,进一步增强了功能调用和结构化输出能力,提升了通用助手能力和代码生成技能。
基于Llama-3-8B的多模态大型语言模型,专注于UI任务。
Ferret-UI是首个以用户界面为中心的多模态大型语言模型(MLLM),专为指代表达、定位和推理任务设计。它基于Gemma-2B和Llama-3-8B构建,能够执行复杂的用户界面任务。这个版本遵循了Apple的研究论文,是一个强大的工具,可以用于图像文本到文本的任务,并且在对话和文本生成方面具有优势。
多语言生成语言模型
Aya模型是一个大规模的多语言生成性语言模型,能够在101种语言中遵循指令。该模型在多种自动和人类评估中优于mT0和BLOOMZ,尽管它覆盖的语言数量是后者的两倍。Aya模型使用包括xP3x、Aya数据集、Aya集合、DataProvenance集合的一个子集和ShareGPT-Command等多个数据集进行训练,并在Apache-2.0许可下发布,以推动多语言技术的发展。
多语言大型语言模型,支持23种语言
Aya Expanse是一个具有高级多语言能力的开放权重研究模型。它专注于将高性能的预训练模型与Cohere For AI一年的研究成果相结合,包括数据套利、多语言偏好训练、安全调整和模型合并。该模型是一个强大的多语言大型语言模型,服务于23种语言,包括阿拉伯语、中文(简体和繁体)、捷克语、荷兰语、英语、法语、德语、希腊语、希伯来语、印地语、印尼语、意大利语、日语、韩语、波斯语、波兰语、葡萄牙语、罗马尼亚语、俄语、西班牙语、土耳其语、乌克兰语和越南语。
多语言大型语言模型,支持23种语言
Aya Expanse 32B是由Cohere For AI开发的多语言大型语言模型,拥有32亿参数,专注于提供高性能的多语言支持。它结合了先进的数据仲裁、多语言偏好训练、安全调整和模型合并技术,以支持23种语言,包括阿拉伯语、中文(简体和繁体)、捷克语、荷兰语、英语、法语、德语、希腊语、希伯来语、印地语、印尼语、意大利语、日语、韩语、波斯语、波兰语、葡萄牙语、罗马尼亚语、俄语、西班牙语、土耳其语、乌克兰语和越南语。该模型的发布旨在使社区基础的研究工作更加易于获取,通过发布高性能的多语言模型权重,供全球研究人员使用。
多语言大型语言模型
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
高效开源的大型语言模型
OLMoE-1B-7B 是一个具有1亿活跃参数和7亿总参数的专家混合型大型语言模型(LLM),于2024年9月发布。该模型在成本相似的模型中表现卓越,与更大的模型如Llama2-13B竞争。OLMoE完全开源,支持多种功能,包括文本生成、模型训练和部署等。
轻量级、多语言的AI模型,支持长文本生成和推理。
Phi-3.5-MoE-instruct是由微软开发的轻量级、多语言的AI模型,基于高质量、推理密集型数据构建,支持128K的上下文长度。该模型经过严格的增强过程,包括监督式微调、近端策略优化和直接偏好优化,以确保精确的指令遵循和强大的安全措施。它旨在加速语言和多模态模型的研究,作为生成性AI功能的构建模块。
安全内容审核模型
ShieldGemma是由Google开发的一系列基于Gemma 2构建的安全内容审核模型,专注于四个危害类别(儿童不宜内容、危险内容、仇恨和骚扰)。它们是文本到文本的解码器仅大型语言模型,仅包含英文版本,具有开放权重,包括2B、9B和27B参数大小的模型。这些模型旨在作为负责任的生成AI工具包的一部分,提高AI应用的安全性。
高质量、类人同声传译系统
CLASI是一个由字节跳动研究团队开发的高质量、类人同声传译系统。它通过新颖的数据驱动读写策略平衡翻译质量和延迟,采用多模态检索模块来增强特定领域术语的翻译,利用大型语言模型(LLMs)生成容错翻译,考虑输入音频、历史上下文和检索信息。在真实世界场景中,CLASI在中英和英中翻译方向上分别达到了81.3%和78.0%的有效信息比例(VIP),远超其他系统。
多语言对话生成模型
Meta Llama 3.1系列模型是一套预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B三种规模的模型,专为多语言对话使用案例优化,性能优于许多开源和闭源聊天模型。
70亿参数的大型多语言对话生成模型
Meta Llama 3.1是Meta公司推出的一种大型语言模型,拥有70亿参数,支持8种语言的文本生成和对话。该模型使用优化的Transformer架构,并通过监督微调(SFT)和人类反馈强化学习(RLHF)进行调优,以符合人类对有用性和安全性的偏好。它旨在为商业和研究用途提供支持,特别是在多语言对话场景下表现出色。
先进的大型语言模型,具备推理和编程能力。
Mistral-Large-Instruct-2407是一个拥有123B参数的先进大型语言模型(LLM),具备最新的推理、知识和编程能力。它支持多语言,包括中文、英语、法语等十种语言,并且在80多种编程语言上受过训练,如Python、Java等。此外,它还具备代理中心能力和先进的数学及推理能力。
大型多语言预训练语言模型
Meta Llama 3.1-405B 是由 Meta 开发的一系列大型多语言预训练语言模型,包含8B、70B和405B三种规模的模型。这些模型经过优化的变压器架构,使用监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调优,以符合人类对帮助性和安全性的偏好。Llama 3.1 模型支持多种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。该模型在多种自然语言生成任务中表现出色,并在行业基准测试中超越了许多现有的开源和封闭聊天模型。
最前沿的开源AI模型,支持多语言和高级功能。
Llama 3.1是Meta AI推出的最新一代大型语言模型,具有128K的上下文长度扩展、支持八种语言,并首次开源了405B参数级别的前沿AI模型。该模型在通用知识、可控性、数学、工具使用和多语言翻译方面具有最先进的能力,能够与最好的闭源模型相媲美。Llama 3.1的发布,将为开发者提供解锁新工作流程的工具,例如合成数据生成和模型蒸馏。
12B参数的大型语言模型
Mistral-Nemo-Base-2407是由Mistral AI和NVIDIA联合训练的12B参数大型预训练生成文本模型。该模型在多语言和代码数据上进行了训练,显著优于相同或更小规模的现有模型。其主要特点包括:Apache 2.0许可证发布,支持预训练和指令版本,128k上下文窗口训练,支持多种语言和代码数据,是Mistral 7B的替代品。模型架构包括40层、5120维、128头维、14364隐藏维、32头数、8个kv头(GQA)、词汇量约128k、旋转嵌入(theta=1M)。该模型在多个基准测试中表现出色,如HellaSwag、Winogrande、OpenBookQA等。
70B参数量的大型语言模型,专为工具使用优化
Llama-3-70B-Tool-Use是一种70B参数量的大型语言模型,专为高级工具使用和功能调用任务设计。该模型在Berkeley功能调用排行榜(BFCL)上的总体准确率达到90.76%,表现优于所有开源的70B语言模型。该模型优化了变换器架构,并通过完整的微调和直接偏好优化(DPO)在Llama 3 70B基础模型上进行了训练。输入为文本,输出为文本,增强了工具使用和功能调用的能力。尽管其主要用途是工具使用和功能调用,但在一般知识或开放式任务中,可能更适用通用语言模型。该模型可能在某些情况下产生不准确或有偏见的内容,用户应注意实现适合其特定用例的适当安全措施。该模型对温度和top_p采样配置非常敏感。
定制化大型语言模型的专业微调工具
Expert Specialized Fine-Tuning (ESFT) 是一种针对具有专家混合(MoE)架构的大型语言模型(LLMs)的高效定制化微调方法。它通过仅调整与任务相关的部分来优化模型性能,提高效率,同时减少资源和存储的使用。
大型语言模型,高效文本生成。
InternLM2.5-7B-Chat GGUF是一个大型语言模型,专为文本生成而设计。它基于开源框架llama.cpp,支持多种硬件平台的本地和云推理。该模型具有7.74亿参数,采用先进的架构设计,能够提供高质量的文本生成服务。
轻量级、先进的文本生成模型
Gemma是由Google开发的一系列轻量级、先进的开放模型,基于与Gemini模型相同的研究和技术构建。它们是文本到文本的解码器仅大型语言模型,适用于多种文本生成任务,如问答、摘要和推理。Gemma模型的相对较小的尺寸使其能够在资源有限的环境中部署,如笔记本电脑、桌面或您自己的云基础设施,使每个人都能接触到最先进的AI模型,并促进创新。
专为角色扮演优化的大型语言模型
Higgs-Llama-3-70B是一个基于Meta-Llama-3-70B的后训练模型,特别针对角色扮演进行了优化,同时在通用领域指令执行和推理方面保持竞争力。该模型通过监督式微调,结合人工标注者和私有大型语言模型构建偏好对,进行迭代偏好优化以对齐模型行为,使其更贴近系统消息。与其它指令型模型相比,Higgs模型更紧密地遵循其角色。
© 2024 AIbase 备案号:闽ICP备08105208号-14