需求人群:
"用于构建和评估大型语言模型的角色扮演能力"
使用场景示例:
使用RoleLLM构建一个能够模仿莎士比亚风格的语言模型
使用RoleLLM评估一个大型语言模型在角色扮演任务上的表现
使用RoleLLM创建一个角色扮演游戏
产品特色:
角色概要构建
基于上下文的指令生成
使用GPT进行角色提示
基于角色的指令调整
浏览量:372
最新流量情况
月访问量
4.92m
平均访问时长
00:06:33
每次访问页数
6.11
跳出率
36.20%
流量来源
直接访问
51.61%
自然搜索
33.46%
邮件
0.04%
外链引荐
12.58%
社交媒体
2.19%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
大型语言模型角色扮演框架
RoleLLM是一个角色扮演框架,用于构建和评估大型语言模型的角色扮演能力。它包括四个阶段:角色概要构建、基于上下文的指令生成、使用GPT进行角色提示和基于角色的指令调整。通过Context-Instruct和RoleGPT,我们创建了RoleBench,这是一个系统化和细粒度的角色级别基准数据集,包含168,093个样本。此外,RoCIT在RoleBench上产生了RoleLLaMA(英语)和RoleGLM(中文),显著提高了角色扮演能力,甚至与使用GPT-4的RoleGPT取得了可比较的结果。
专为角色扮演优化的大型语言模型
Higgs-Llama-3-70B是一个基于Meta-Llama-3-70B的后训练模型,特别针对角色扮演进行了优化,同时在通用领域指令执行和推理方面保持竞争力。该模型通过监督式微调,结合人工标注者和私有大型语言模型构建偏好对,进行迭代偏好优化以对齐模型行为,使其更贴近系统消息。与其它指令型模型相比,Higgs模型更紧密地遵循其角色。
通过角色扮演进行对话的大型语言模型
Peach-9B-8k-Roleplay是一个经过微调的大型语言模型,专门用于角色扮演对话。它基于01-ai/Yi-1.5-9B模型,通过数据合成方法在超过100K的对话上进行训练。尽管模型参数较小,但可能在34B以下参数的语言模型中表现最佳。
7B参数的大型语言模型,提升自然语言处理能力
OLMo 2 7B是由Allen Institute for AI (Ai2)开发的一款7B参数的大型语言模型,它在多个自然语言处理任务上展现出色的表现。该模型通过在大规模数据集上的训练,能够理解和生成自然语言,支持多种语言模型相关的科研和应用。OLMo 2 7B的主要优点包括其大规模的参数量,使得模型能够捕捉到更加细微的语言特征,以及其开源的特性,促进了学术界和工业界的进一步研究和应用。
语言智能角色扮演开放世界游戏
LARP是一个语言智能代理框架,用于开放世界游戏中的角色扮演。它包含认知架构、环境交互和角色塑造模块,可以创造独特背景和个性的游戏角色,增强用户与智能体的交互体验。LARP通过精炼交互和连贯的长期记忆,帮助语言模型适应开放世界的复杂性,实现灵活的问题解决。
基于特定模型的量化大型语言模型,适用于自然语言处理等任务。
该模型是量化版大型语言模型,采用4位量化技术,降低存储与计算需求,适用于自然语言处理,参数量8.03B,免费且可用于非商业用途,适合资源受限环境下高性能语言应用需求者。
自然语言处理模型
LLaMA Pro 是一种用于大规模自然语言处理的模型。通过使用 Transformer 模块的扩展,该模型可以在不遗忘旧知识的情况下,高效而有效地利用新语料库来提升模型的知识。LLaMA Pro 具有出色的性能,在通用任务、编程和数学方面都表现出色。它是基于 LLaMA2-7B 进行初始化的通用模型。LLaMA Pro 和其指导类模型(LLaMA Pro-Instruct)在各种基准测试中均取得了先进的性能,展示了在智能代理中进行推理和处理各种任务的巨大潜力。该模型为将自然语言和编程语言进行整合提供了宝贵的见解,为在各种环境中有效运作的先进语言代理的开发奠定了坚实的基础。
19亿参数规模的角色扮演模型,支持few shots角色定制。
Index-1.9B-Character是由Index团队自主研发的大型语言模型,专注于角色扮演领域,拥有19亿参数规模。该模型支持用户通过上传角色对话语料实现快速的角色定制,具备较高的角色一致性、对话能力和角色扮演吸引力。在CharacterEval权威benchmark评估中,整体均分排名第九,表现优于同量级模型。
AI自然语言处理模型
Powerups AI是一款基于人工智能技术的自然语言处理模型,具有极高的语言理解和生成能力。该模型可以用于文本生成、语言翻译、对话生成等多个领域,可以帮助用户快速生成高质量的文本内容,提高工作效率。
先进的自然语言处理模型
MiscNinja是一种先进的自然语言处理模型,具有强大的文本生成和理解能力。其优势在于可以应用于多种领域,如智能对话系统、文本摘要、自动翻译等。定价根据使用情况而定,定位于为开发者和企业提供强大的自然语言处理解决方案。
一个完全开源的大型语言模型,提供先进的自然语言处理能力。
MAP-NEO是一个完全开源的大型语言模型,它包括预训练数据、数据处理管道(Matrix)、预训练脚本和对齐代码。该模型从零开始训练,使用了4.5T的英文和中文token,展现出与LLaMA2 7B相当的性能。MAP-NEO在推理、数学和编码等具有挑战性的任务中表现出色,超越了同等规模的模型。为了研究目的,我们致力于实现LLM训练过程的完全透明度,因此我们全面发布了MAP-NEO,包括最终和中间检查点、自训练的分词器、预训练语料库以及高效稳定的优化预训练代码库。
快速构建自然语言处理应用
GradientJ是一个用于测试、部署和管理自然语言处理应用的平台。它基于大型语言模型如GPT-4,提供快速构建NLP应用的能力。用户可以使用GradientJ开发自定义的文本生成、问答系统、聊天机器人等NLP应用。GradientJ提供简单易用的接口和工具,让开发者能够快速上手并实现自己的用例。定价方案灵活,适合个人开发者和企业用户。
处理长文本的大型语言模型
LongLLaMA 是一个大型语言模型,能够处理长篇文本。它基于 OpenLLaMA,并使用 Focused Transformer (FoT) 方法进行了微调。它能够处理长达 256k 标记甚至更多的文本。我们提供了一个较小的 3B 基础模型(未经过指令调整),并在 Hugging Face 上提供了支持更长上下文的推断代码。我们的模型权重可以作为现有实现中 LLaMA 的替代品(适用于最多 2048 个标记的短上下文)。此外,我们还提供了评估结果和与原始 OpenLLaMA 模型的比较。
智能角色模型,构建最优秀的大模型底座
百川角色大模型是百川智能提供的一款智能角色模型,融合了意图理解、信息检索以及强化学习技术,结合有监督微调与人类意图对齐,在知识问答、文本创作领域表现突出。该模型可实现角色扮演对话,提供高度开放的个性化角色定制能力,具备高度准确性和口语化的回答能力。
用于角色扮演、检索增强生成和功能调用的小型语言模型
Nemotron-Mini-4B-Instruct 是 NVIDIA 开发的一款小型语言模型,通过蒸馏、剪枝和量化优化,以提高速度和便于在设备上部署。它是从 Nemotron-4 15B 通过 NVIDIA 的大型语言模型压缩技术剪枝和蒸馏得到的 nvidia/Minitron-4B-Base 的微调版本。此指令模型针对角色扮演、检索增强问答(RAG QA)和功能调用进行了优化,支持 4096 个令牌的上下文长度,已准备好用于商业用途。
Mistral是一个开源自然语言处理模型
Mistral是一个小型但强大的开源自然语言处理模型,可适用于多种使用场景。Mistral 7B模型性能优于Llama 2 13B模型,拥有自然的编程能力和8000个序列长度。Mistral采用Apache 2.0许可证发布,易于在任何云端和个人电脑GPU上部署使用。
AI语音角色扮演
Dittin AI是一款提供AI语音角色扮演服务的应用。用户可以选择不同的虚拟角色,每个角色都有独特的故事和个性。通过Dittin AI,用户可以享受到与虚拟角色互动的乐趣,体验不同的情境和剧情。
强大的语言模型,支持多种自然语言处理任务。
GLM-4-32B 是一个高性能的生成语言模型,旨在处理多种自然语言任务。它通过深度学习技术训练而成,能够生成连贯的文本和回答复杂问题。该模型适用于学术研究、商业应用和开发者,价格合理,定位精准,是自然语言处理领域的领先产品。
哔哩哔哩自主研发的轻量级大语言模型
Index-1.9B系列是哔哩哔哩公司自主研发的轻量级大语言模型,包含多种版本,如base、pure、chat和character等,适用于中英文为主的语料预训练,并在多个评测基准上表现优异。模型支持SFT和DPO对齐,以及RAG技术实现角色扮演定制,适用于对话生成、角色扮演等场景。
先进的多模态大型语言模型
InternVL2_5-2B-MPO是一个多模态大型语言模型系列,展示了卓越的整体性能。该系列基于InternVL2.5和混合偏好优化构建。它集成了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。该模型在多模态任务中表现出色,能够处理包括图像和文本在内的多种数据类型,适用于需要理解和生成多模态内容的场景。
世界顶尖的开源大型语言模型
Reflection Llama-3.1 70B 是目前世界上顶尖的开源大型语言模型(LLM),采用名为 Reflection-Tuning 的新技术进行训练,使模型能够检测其推理中的错误并进行修正。该模型在合成数据上进行了训练,这些数据由 Glaive 生成。对于正在训练模型的用户来说,Glaive 是一个非常出色的工具。该模型使用标准的 Llama 3.1 聊天格式,通过特殊的标签来区分模型的内部思考和最终答案,从而提升用户体验。
多语言大型语言模型
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
大型语言模型的详细列表和信息
Models Table 提供了一个包含300多个大型语言模型的列表,这些模型被所有主要的AI实验室使用,包括Amazon Olympus, OpenAI GPT-5, OpenAI GPT-6等。该列表展示了大型语言模型的发展趋势和多样性,对于AI研究者和开发者来说是一个宝贵的资源。
AI角色扮演聊天
DreamPal通过结合AI聊天和沉浸式AI角色扮演,重新定义了聊天体验,允许用户与智能虚拟伴侣互动。这些由AI驱动的角色提供深入、有意义的对话,根据每个用户的不同进行适应,为您带来真正个性化的旅程。
高效开源的大型语言模型
OLMoE-1B-7B 是一个具有1亿活跃参数和7亿总参数的专家混合型大型语言模型(LLM),于2024年9月发布。该模型在成本相似的模型中表现卓越,与更大的模型如Llama2-13B竞争。OLMoE完全开源,支持多种功能,包括文本生成、模型训练和部署等。
© 2025 AIbase 备案号:闽ICP备08105208号-14