需求人群:
"目标受众为需要进行角色扮演对话的开发者和爱好者,例如游戏开发者、剧本创作者、语言模型研究者等。该产品可以提供丰富的对话生成,帮助他们快速构建对话场景,提高创作效率。"
使用场景示例:
游戏开发者使用该模型快速生成角色对话,丰富游戏剧情。
剧本创作者利用该模型进行角色对话的初步构思。
语言模型研究者使用该模型进行对话生成效果的测试和研究。
产品特色:
文本生成:能够生成符合角色设定的对话文本。
角色扮演:支持用户与AI进行角色扮演对话。
多语言支持:支持中文和英文对话。
模型微调:基于大量对话数据进行微调,优化对话质量。
参数优化:提供温度和top_p参数调整,以控制生成文本的多样性和连贯性。
长对话支持:训练数据支持最长8k的对话长度。
使用教程:
1. 导入必要的库和模块,如torch和transformers。
2. 使用AutoTokenizer和AutoModelForCausalLM加载模型和分词器。
3. 准备对话消息,包括角色和内容,并使用tokenizer进行token化。
4. 设置生成参数,如温度、top_p等,以控制文本生成的特性。
5. 使用model.generate方法生成对话文本。
6. 使用tokenizer.decode方法将生成的文本转换回可读的格式。
浏览量:176
最新流量情况
月访问量
17104.19k
平均访问时长
00:05:49
每次访问页数
5.52
跳出率
44.67%
流量来源
直接访问
48.37%
自然搜索
36.16%
邮件
0.03%
外链引荐
12.40%
社交媒体
3.02%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
18.70%
印度
6.62%
日本
3.75%
韩国
3.77%
俄罗斯
5.33%
美国
17.90%
通过角色扮演进行对话的大型语言模型
Peach-9B-8k-Roleplay是一个经过微调的大型语言模型,专门用于角色扮演对话。它基于01-ai/Yi-1.5-9B模型,通过数据合成方法在超过100K的对话上进行训练。尽管模型参数较小,但可能在34B以下参数的语言模型中表现最佳。
多功能中文英文对话模型
Gemma-2-9B-Chinese-Chat是一款基于google/gemma-2-9b-it的指令调整型语言模型,专为中英文用户设计,具备角色扮演和工具使用等多种能力。该模型通过ORPO算法进行微调,显著提升了对中文问题的响应准确性,减少了中英文混合使用的问题,并在角色扮演、工具使用和数学计算方面表现出色。
19亿参数规模的角色扮演模型,支持few shots角色定制。
Index-1.9B-Character是由Index团队自主研发的大型语言模型,专注于角色扮演领域,拥有19亿参数规模。该模型支持用户通过上传角色对话语料实现快速的角色定制,具备较高的角色一致性、对话能力和角色扮演吸引力。在CharacterEval权威benchmark评估中,整体均分排名第九,表现优于同量级模型。
一款专为中英文用户定制的指令式语言模型。
Llama3.1-8B-Chinese-Chat是一个基于Meta-Llama-3.1-8B-Instruct模型的指令式调优语言模型,专为中文和英文用户设计,具有角色扮演和工具使用等多种能力。该模型通过ORPO算法进行微调,显著减少了中文问题用英文回答和回答中中英文混合的问题,特别是在角色扮演、功能调用和数学能力方面有显著提升。
70亿参数的中英双语对话模型
Llama3.1-70B-Chinese-Chat 是基于 Meta-Llama-3.1-70B-Instruct 模型的指令调优语言模型,专为中英双语用户设计,具备角色扮演和工具使用等多样化能力。该模型通过 ORPO 算法进行微调,显著减少了中文问题用英文回答以及回答中中英文混合的问题,特别是在角色扮演、功能调用和数学能力方面有显著提升。
多语言对话生成模型
Meta Llama 3.1是一系列预训练和指令调整的多语言大型语言模型(LLMs),支持8种语言,专为对话使用案例优化,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)来提高安全性和有用性。
首个面向中英文用户的指令调优语言模型
Gemma-2-27B-Chinese-Chat是基于google/gemma-2-27b-it的首个指令调优语言模型,专为中英文用户设计,拥有角色扮演和工具使用等多种能力。该模型通过ORPO算法进行微调,显著提升了在中英文对话、角色扮演和数学计算等方面的性能。
基于19亿参数的对话生成模型
Index-1.9B-Chat是一个基于19亿参数的对话生成模型,它通过SFT和DPO对齐技术,结合RAG实现fewshots角色扮演定制,具有较高的对话趣味性和定制性。该模型在2.8T中英文为主的语料上预训练,并且在多个评测基准上表现领先。
专为角色扮演优化的大型语言模型
Higgs-Llama-3-70B是一个基于Meta-Llama-3-70B的后训练模型,特别针对角色扮演进行了优化,同时在通用领域指令执行和推理方面保持竞争力。该模型通过监督式微调,结合人工标注者和私有大型语言模型构建偏好对,进行迭代偏好优化以对齐模型行为,使其更贴近系统消息。与其它指令型模型相比,Higgs模型更紧密地遵循其角色。
语言智能角色扮演开放世界游戏
LARP是一个语言智能代理框架,用于开放世界游戏中的角色扮演。它包含认知架构、环境交互和角色塑造模块,可以创造独特背景和个性的游戏角色,增强用户与智能体的交互体验。LARP通过精炼交互和连贯的长期记忆,帮助语言模型适应开放世界的复杂性,实现灵活的问题解决。
连接大型语言模型与谷歌数据共享平台,减少AI幻觉现象。
DataGemma是世界上首个开放模型,旨在通过谷歌数据共享平台的大量真实世界统计数据,帮助解决AI幻觉问题。这些模型通过两种不同的方法增强了语言模型的事实性和推理能力,从而减少幻觉现象,提升AI的准确性和可靠性。DataGemma模型的推出,是AI技术在提升数据准确性和减少错误信息传播方面的重要进步,对于研究人员、决策者以及普通用户来说,都具有重要的意义。
与文档进行自然语言对话的Python应用
Chat With Your Docs 是一个Python应用程序,允许用户与多种文档格式(如PDF、网页和YouTube视频)进行对话。用户可以使用自然语言提问,应用程序将基于文档内容提供相关回答。该应用利用语言模型生成准确答案。请注意,应用仅回应与加载的文档相关的问题。
轻量级语言模型编程库,将提示视为函数。
ell是一个轻量级的语言模型编程库,它将提示视为函数,而不是简单的字符串。ell的设计基于在OpenAI和创业生态系统中多年构建和使用语言模型的经验。它提供了一种全新的编程方式,允许开发者通过定义函数来生成发送给语言模型的字符串提示或消息列表。这种封装方式为用户创建了一个清晰的接口,用户只需关注LMP所需的数据。ell还提供了丰富的工具,支持监控、版本控制和可视化,使得提示工程从一门黑艺术转变为一门科学。
通过自博弈相互推理,提升小型语言模型的解决问题能力。
rStar是一个自我博弈相互推理方法,它通过将推理过程分解为解决方案生成和相互验证,显著提升了小型语言模型(SLMs)的推理能力,无需微调或使用更高级的模型。rStar通过蒙特卡洛树搜索(MCTS)和人类推理动作的结合,构建更高质量的推理轨迹,并通过另一个类似能力的SLM作为鉴别器来验证这些轨迹的正确性。这种方法在多个SLMs上进行了广泛的实验,证明了其在解决多样化推理问题方面的有效性。
一个提供多种角色体验的互动平台。
Altera PlayLabs是一个在线互动平台,用户可以通过选择不同的角色进行模拟生存体验。该平台通过模拟生存游戏,让用户在虚拟环境中体验生存挑战,增强用户的决策能力和应变能力。产品背景信息显示,该平台拥有多种角色供用户选择,每种角色都有其独特的生存技能和挑战。价格方面,目前平台提供免费体验,但可能包含内购项目。
高效能的第三代MiniCPM系列模型
MiniCPM3-4B是MiniCPM系列的第三代产品,整体性能超越了Phi-3.5-mini-Instruct和GPT-3.5-Turbo-0125,与许多近期的7B至9B模型相当。与前两代相比,MiniCPM3-4B具有更强大的多功能性,支持函数调用和代码解释器,使其能够更广泛地应用于各种场景。此外,MiniCPM3-4B拥有32k的上下文窗口,配合LLMxMapReduce技术,理论上可以处理无限上下文,而无需大量内存。
与文学巨著中的角色对话,让阅读体验生动起来。
Hello Literature 是一款应用程序,它允许用户与文学名著中的角色进行对话。这款应用通过创新的方式,将书籍的世界带入生活,无论是教育工作者、家长、学生还是终身学习者,都能通过这款应用获得前所未有的阅读体验。该应用支持基于项目的沉浸式学习,帮助学生与他们学习的书籍中的角色互动,加深理解和参与度。它使用真实的语音生成技术,使应用更加易于访问和沉浸。
先进的小型语言模型,专为设备端应用设计。
Zamba2-mini是由Zyphra Technologies Inc.发布的小型语言模型,专为设备端应用设计。它在保持极小的内存占用(<700MB)的同时,实现了与更大模型相媲美的评估分数和性能。该模型采用了4bit量化技术,具有7倍参数下降的同时保持相同性能的特点。Zamba2-mini在推理效率上表现出色,与Phi3-3.8B等更大模型相比,具有更快的首令牌生成时间、更低的内存开销和更低的生成延迟。此外,该模型的权重已开源发布(Apache 2.0),允许研究人员、开发者和公司利用其能力,推动高效基础模型的边界。
高效低成本的小型语言模型
Phi-3是微软Azure推出的一系列小型语言模型(SLMs),具有突破性的性能,同时成本和延迟都很低。这些模型专为生成式AI解决方案设计,体积更小,计算需求更低。Phi-3模型遵循微软AI原则开发,包括责任、透明度、公平性、可靠性和安全性、隐私和安全性以及包容性,确保了安全性。此外,Phi-3还提供了本地部署、准确相关回答、低延迟场景部署、成本受限任务处理和定制化精度等功能。
前沿语言模型,具有先进的推理能力。
Grok-2是xAI的前沿语言模型,具有最先进的推理能力。此次发布包括Grok家族的两个成员:Grok-2和Grok-2 mini。这两个模型现在都在𝕏平台上发布给Grok用户。Grok-2是Grok-1.5的重要进步,具有聊天、编程和推理方面的前沿能力。同时,xAI引入了Grok-2 mini,一个小巧但功能强大的Grok-2的兄弟模型。Grok-2的早期版本已经在LMSYS排行榜上以“sus-column-r”的名字进行了测试。它在整体Elo得分方面超过了Claude 3.5 Sonnet和GPT-4-Turbo。
评估大型语言模型的逻辑推理和上下文理解能力。
Turtle Benchmark是一款基于'Turtle Soup'游戏的新型、无法作弊的基准测试,专注于评估大型语言模型(LLMs)的逻辑推理和上下文理解能力。它通过消除对背景知识的需求,提供了客观和无偏见的测试结果,具有可量化的结果,并且通过使用真实用户生成的问题,使得模型无法被'游戏化'。
新一代数学模型,专注于解决复杂数学问题。
Qwen2-Math是一系列基于Qwen2 LLM构建的专门用于数学解题的语言模型。它在数学相关任务上的表现超越了现有的开源和闭源模型,为科学界解决需要复杂多步逻辑推理的高级数学问题提供了重要帮助。
动态记忆框架,支持大型语言模型和代理。
RedCache-AI是一个为大型语言模型和代理设计的动态记忆框架,它允许开发者构建从AI驱动的约会应用到医疗诊断平台等广泛的应用。它解决了现有解决方案昂贵、封闭源代码或缺乏对外部依赖的广泛支持的问题。
通过街霸3对战评估大型语言模型
llm-colosseum是一个创新的基准测试工具,它使用街霸3游戏来评估大型语言模型(LLM)的实时决策能力。与传统的基准测试不同,这个工具通过模拟实际游戏场景来测试模型的快速反应、智能策略、创新思维、适应性和恢复力。
70亿参数的大型多语言对话生成模型
Meta Llama 3.1是Meta公司推出的一种大型语言模型,拥有70亿参数,支持8种语言的文本生成和对话。该模型使用优化的Transformer架构,并通过监督微调(SFT)和人类反馈强化学习(RLHF)进行调优,以符合人类对有用性和安全性的偏好。它旨在为商业和研究用途提供支持,特别是在多语言对话场景下表现出色。
大型多语言预训练语言模型
Meta Llama 3.1-405B 是由 Meta 开发的一系列大型多语言预训练语言模型,包含8B、70B和405B三种规模的模型。这些模型经过优化的变压器架构,使用监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调优,以符合人类对帮助性和安全性的偏好。Llama 3.1 模型支持多种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。该模型在多种自然语言生成任务中表现出色,并在行业基准测试中超越了许多现有的开源和封闭聊天模型。
PygmalionAI的大规模推理引擎
Aphrodite是PygmalionAI的官方后端引擎,旨在为PygmalionAI网站提供推理端点,并允许以极快的速度为大量用户提供Pygmalion模型服务。Aphrodite利用vLLM的分页注意力技术,实现了连续批处理、高效的键值管理、优化的CUDA内核等特性,支持多种量化方案,以提高推理性能。
高性能语言模型基准测试数据集
DCLM-baseline是一个用于语言模型基准测试的预训练数据集,包含4T个token和3B个文档。它通过精心策划的数据清洗、过滤和去重步骤,从Common Crawl数据集中提取,旨在展示数据策划在训练高效语言模型中的重要性。该数据集仅供研究使用,不适用于生产环境或特定领域的模型训练,如代码和数学。
© 2024 AIbase 备案号:闽ICP备08105208号-14