需求人群:
"Index-1.9B-Chat模型适合需要生成高质量对话内容的开发者和企业,如聊天机器人开发者、内容创作者等。它可以帮助用户快速生成有趣、自然的对话,提高产品交互性和用户体验。"
使用场景示例:
聊天机器人使用Index-1.9B-Chat生成自然对话,提升用户满意度
内容创作者利用该模型生成对话剧本,丰富作品内容
企业客服系统集成该模型,自动生成回答,提高服务效率
产品特色:
支持多种对话场景的生成,具有高趣味性
基于大量中英文语料进行预训练,具有广泛的语言理解能力
通过SFT和DPO技术进行模型对齐,优化对话生成效果
引入RAG技术实现角色扮演定制,提供个性化对话体验
适配llamacpp和Ollama,具有较好的硬件兼容性
提供详细的技术报告和GitHub资源,方便用户学习和使用
使用教程:
1. 安装必要的Python库,如transformers和PyTorch。
2. 导入AutoTokenizer和pipeline模块。
3. 设置模型路径和设备类型。
4. 使用AutoTokenizer.from_pretrained加载模型的tokenizer。
5. 通过pipeline创建text-generation的pipeline。
6. 准备系统消息和用户查询,构建model_input数组。
7. 使用generator生成对话,设置参数如max_new_tokens、top_k等。
8. 打印生成的对话结果。
浏览量:52
最新流量情况
月访问量
29742.94k
平均访问时长
00:04:44
每次访问页数
5.85
跳出率
44.20%
流量来源
直接访问
50.45%
自然搜索
33.93%
邮件
0.03%
外链引荐
12.90%
社交媒体
2.67%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
21.55%
印度
7.98%
日本
2.93%
俄罗斯
5.29%
美国
16.06%
基于19亿参数的对话生成模型
Index-1.9B-Chat是一个基于19亿参数的对话生成模型,它通过SFT和DPO对齐技术,结合RAG实现fewshots角色扮演定制,具有较高的对话趣味性和定制性。该模型在2.8T中英文为主的语料上预训练,并且在多个评测基准上表现领先。
通过角色扮演进行对话的大型语言模型
Peach-9B-8k-Roleplay是一个经过微调的大型语言模型,专门用于角色扮演对话。它基于01-ai/Yi-1.5-9B模型,通过数据合成方法在超过100K的对话上进行训练。尽管模型参数较小,但可能在34B以下参数的语言模型中表现最佳。
70亿参数的中英双语对话模型
Llama3.1-70B-Chinese-Chat 是基于 Meta-Llama-3.1-70B-Instruct 模型的指令调优语言模型,专为中英双语用户设计,具备角色扮演和工具使用等多样化能力。该模型通过 ORPO 算法进行微调,显著减少了中文问题用英文回答以及回答中中英文混合的问题,特别是在角色扮演、功能调用和数学能力方面有显著提升。
多功能中文英文对话模型
Gemma-2-9B-Chinese-Chat是一款基于google/gemma-2-9b-it的指令调整型语言模型,专为中英文用户设计,具备角色扮演和工具使用等多种能力。该模型通过ORPO算法进行微调,显著提升了对中文问题的响应准确性,减少了中英文混合使用的问题,并在角色扮演、工具使用和数学计算方面表现出色。
19亿参数规模的角色扮演模型,支持few shots角色定制。
Index-1.9B-Character是由Index团队自主研发的大型语言模型,专注于角色扮演领域,拥有19亿参数规模。该模型支持用户通过上传角色对话语料实现快速的角色定制,具备较高的角色一致性、对话能力和角色扮演吸引力。在CharacterEval权威benchmark评估中,整体均分排名第九,表现优于同量级模型。
专为角色扮演优化的大型语言模型
Higgs-Llama-3-70B是一个基于Meta-Llama-3-70B的后训练模型,特别针对角色扮演进行了优化,同时在通用领域指令执行和推理方面保持竞争力。该模型通过监督式微调,结合人工标注者和私有大型语言模型构建偏好对,进行迭代偏好优化以对齐模型行为,使其更贴近系统消息。与其它指令型模型相比,Higgs模型更紧密地遵循其角色。
开源多模态预训练模型,具备中英双语对话能力。
GLM-4V-9B是智谱AI推出的新一代预训练模型,支持1120*1120高分辨率下的中英双语多轮对话,以及视觉理解能力。在多模态评测中,GLM-4V-9B展现出超越GPT-4-turbo-2024-04-09、Gemini 1.0 Pro、Qwen-VL-Max和Claude 3 Opus的卓越性能。
通过实时 AI 增强消息指导 Stella 在外星球的生存。
《Whispers from the Star》是一个互动故事,设置在太空中。玩家通过实时的 AI 增强消息,与坠毁在外星球的女孩 Stella 进行沟通,引导她的生存之路。每一个回应都可能影响她的生死。这种互动形式让玩家不仅仅是旁观者,更是故事的参与者。该产品旨在通过互动叙事提供沉浸式体验,适合喜欢故事和游戏的用户。
AI驱动的角色设定生成器,为同人小说、角色扮演游戏和原创故事创造独特个性。
该产品利用人工智能技术,基于数千种虚构人物原型,为创作者提供角色设定灵感。它通过结合行为心理学和创意写作技巧,生成既出人意料又合情合理的人物特质。产品的主要优点在于其高度的定制化能力、丰富的动态故事元素以及对多种题材的适配性。它为创作者提供了强大的工具,帮助他们在短时间内创造出独特且富有深度的角色。
Opine 是一款 AI 原生的社交媒体应用,用户可以创建角色、制作视频并分享。
Opine 是一款创新的 AI 社交媒体应用,旨在通过 AI 技术帮助用户创建个性化的角色和视频内容,从而在社交平台上表达自我。该产品利用 AI 的生成能力和个性化推荐技术,为用户提供独特的创作体验。Opine 的主要优点在于其创新的创作方式和低门槛的视频制作功能,适合希望通过创意内容表达自我的用户。目前产品处于测试阶段,主要面向早期创作者和对新技术感兴趣的用户。
DeepHermes 3 是一款支持推理和常规响应模式的大型语言模型。
DeepHermes 3 是 NousResearch 开发的先进语言模型,能够通过系统性推理提升回答准确性。它支持推理模式和常规响应模式,用户可以通过系统提示切换。该模型在多轮对话、角色扮演、推理等方面表现出色,旨在为用户提供更强大和灵活的语言生成能力。模型基于 Llama-3.1-8B 微调,参数量达 80.3 亿,支持多种应用场景,如推理、对话、函数调用等。
Magma 是一个能够理解和执行多模态输入的基础模型,可用于复杂任务和环境。
Magma 是微软研究团队推出的一个多模态基础模型,旨在通过视觉、语言和动作的结合,实现复杂任务的规划和执行。它通过大规模的视觉语言数据预训练,具备了语言理解、空间智能和动作规划的能力,能够在 UI 导航、机器人操作等任务中表现出色。该模型的出现为多模态 AI 代理任务提供了一个强大的基础框架,具有广泛的应用前景。
基于Deepseek-R1-14B优化的角色扮演与思维链(CoT)模型,适合长文本创作与对话。
该产品是一款基于Deepseek-R1-14B架构的深度优化模型,通过注入大量小说数据和角色扮演数据,结合思维链(CoT)训练策略,显著提升角色扮演、小说文本生成与长程上下文关联能力。其主要优点包括强大的上下文连贯性、丰富的角色扮演词汇量以及对复杂逻辑推理的支持。该模型适用于需要深度创作和对话的场景,如小说创作、剧本编写等。产品采用Apache 2.0许可,目前提供免费使用,但需遵守相关版权协议。
LLMs 无需任何培训就能看见和听见
MILS是一个由Facebook Research发布的开源项目,旨在展示大型语言模型(LLMs)在未经过任何训练的情况下,能够处理视觉和听觉任务的能力。该技术通过利用预训练的模型和优化算法,实现了对图像、音频和视频的自动描述生成。这一技术突破为多模态人工智能的发展提供了新的思路,展示了LLMs在跨模态任务中的潜力。该模型主要面向研究人员和开发者,为他们提供了一个强大的工具来探索多模态应用。目前该项目是免费开源的,旨在推动学术研究和技术发展。
由Google Research开发的预训练时间序列预测模型。
TimesFM是一个由Google Research开发的预训练时间序列预测模型,用于时间序列预测任务。该模型在多个数据集上进行了预训练,能够处理不同频率和长度的时间序列数据。其主要优点包括高性能、可扩展性强以及易于使用。该模型适用于需要准确预测时间序列数据的各种应用场景,如金融、气象、能源等领域。该模型在Hugging Face平台上免费提供,用户可以方便地下载和使用。
开源的端到端自动驾驶多模态模型
OpenEMMA是一个开源项目,复现了Waymo的EMMA模型,提供了一个端到端框架用于自动驾驶车辆的运动规划。该模型利用预训练的视觉语言模型(VLMs)如GPT-4和LLaVA,整合文本和前视摄像头输入,实现对未来自身路径点的精确预测,并提供决策理由。OpenEMMA的目标是为研究人员和开发者提供易于获取的工具,以推进自动驾驶研究和应用。
一个基于Llama模型的量化版本,用于对话和幻觉检测。
PatronusAI/Llama-3-Patronus-Lynx-8B-v1.1-Instruct-Q8-GGUF是一个基于Llama模型的量化版本,专为对话和幻觉检测设计。该模型使用了GGUF格式,拥有8.03亿参数,属于大型语言模型。它的重要性在于能够提供高质量的对话生成和幻觉检测能力,同时保持模型的高效运行。该模型是基于Transformers库和GGUF技术构建的,适用于需要高性能对话系统和内容生成的应用场景。
高效处理长文本的双向编码器模型
ModernBERT-base是一个现代化的双向编码器Transformer模型,预训练于2万亿英文和代码数据,原生支持长达8192个token的上下文。该模型采用了Rotary Positional Embeddings (RoPE)、Local-Global Alternating Attention和Unpadding等最新架构改进,使其在长文本处理任务中表现出色。ModernBERT-base适用于需要处理长文档的任务,如检索、分类和大型语料库中的语义搜索。模型训练数据主要为英文和代码,因此可能在其他语言上的表现会有所降低。
一键生成风格化照片的AI相机
Style Me AI Magic Camera是一款利用人工智能技术,让用户能够一键生成具有不同风格的照片的应用。它拥有庞大的模板库,用户只需上传一张头像照片,即可生成风格相似的照片,如职场装扮、欧洲长裙、皇室风格、旅行装扮、游戏角色、动漫卡通等。这款应用的主要优点在于它的便捷性和创造性,用户可以轻松体验到不同风格的自己,并且可以立即分享到各大社交媒体平台。
多视角视频生成同步技术
SynCamMaster是一种先进的视频生成技术,它能够从多样化的视角同步生成多摄像机视频。这项技术通过预训练的文本到视频模型,增强了视频内容在不同视角下的动态一致性,对于虚拟拍摄等应用场景具有重要意义。该技术的主要优点包括能够处理开放世界视频的任意视角生成,整合6自由度摄像机姿态,并设计了一种渐进式训练方案,利用多摄像机图像和单目视频作为补充,显著提升了模型性能。
多模态大型语言模型,融合视觉与语言理解。
InternVL2_5-26B是一个先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,进一步发展而来。该模型保持了其前身的“ViT-MLP-LLM”核心模型架构,并集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),例如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5系列模型在多模态任务中展现出卓越的性能,尤其在视觉感知和多模态能力方面。
70B参数的多语言大型预训练语言模型
Meta Llama 3.3是一个70B参数的多语言大型预训练语言模型(LLM),专为多语言对话用例优化,并在常见行业基准测试中表现优于许多现有的开源和封闭聊天模型。该模型采用优化的Transformer架构,并使用监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来符合人类的有用性和安全性偏好。
开源AI语音处理工具包,支持语音增强、分离和目标说话人提取。
ClearerVoice-Studio是一个开源的AI驱动语音处理工具包,专为研究人员、开发者和最终用户设计。它提供了语音增强、语音分离、目标说话人提取等功能,并提供了最新的预训练模型以及训练和推理脚本,全部可通过此仓库访问。该工具包以其预训练模型、易用性、全面功能和社区驱动的特点而受到青睐。
多模态原生Mixture-of-Experts模型
Aria-Base-64K是Aria系列的基础模型之一,专为研究目的和继续训练而设计。该模型在长文本预训练阶段后形成,经过33B个token(21B多模态,12B语言,69%为长文本)的训练。它适合于长视频问答数据集或长文档问答数据集的继续预训练或微调,即使在资源有限的情况下,也可以通过短指令调优数据集进行后训练,并转移到长文本问答场景。该模型能够理解多达250张高分辨率图像或多达500张中等分辨率图像,并在语言和多模态场景中保持强大的基础性能。
大规模多模态预训练数据集
allenai/olmo-mix-1124数据集是由Hugging Face提供的一个大规模多模态预训练数据集,主要用于训练和优化自然语言处理模型。该数据集包含了大量的文本信息,覆盖了多种语言,并且可以用于各种文本生成任务。它的重要性在于提供了一个丰富的资源,使得研究人员和开发者能够训练出更加精准和高效的语言模型,进而推动自然语言处理技术的发展。
文档智能的视觉引导生成文本布局预训练模型
ViTLP是一个视觉引导的生成文本布局预训练模型,旨在提高文档智能处理的效率和准确性。该模型结合了OCR文本定位和识别功能,能够在文档图像上进行快速准确的文本检测和识别。ViTLP模型的预训练版本ViTLP-medium(380M参数)在计算资源和预训练数据集规模的限制下,提供了一个平衡的解决方案,既保证了模型的性能,又优化了推理速度和内存使用。ViTLP的推理速度在Nvidia 4090上处理一页文档图像通常在5到10秒内,与大多数OCR引擎相比具有竞争力。
高性能英文对话生成模型
OLMo-2-1124-7B-Instruct是由Allen人工智能研究所开发的一个大型语言模型,专注于对话生成任务。该模型在多种任务上进行了优化,包括数学问题解答、GSM8K、IFEval等,并在Tülu 3数据集上进行了监督微调。它是基于Transformers库构建的,可以用于研究和教育目的。该模型的主要优点包括高性能、多任务适应性和开源性,使其成为自然语言处理领域的一个重要工具。
AI驱动的地下城RPG文字冒险游戏
AI Game Master是一款由AI驱动的地下城RPG文字冒险游戏,玩家可以在游戏中扮演英雄角色,选择剧情,通过文本指令进行战斗,并引导故事发展。这款游戏结合了AI技术,提供了一个无限制的想象空间,让玩家的每个文字输入都能塑造叙事。产品背景信息显示,AI Game Master旨在提供一种新颖的游戏体验,通过AI技术增强游戏的互动性和沉浸感。目前产品提供免费下载,玩家可以通过消耗币与AI互动,币可以通过游戏内机制获得。
© 2025 AIbase 备案号:闽ICP备08105208号-14