浏览量:466
最新流量情况
月访问量
25296.55k
平均访问时长
00:04:45
每次访问页数
5.83
跳出率
43.31%
流量来源
直接访问
48.39%
自然搜索
35.85%
邮件
0.03%
外链引荐
12.76%
社交媒体
2.96%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
谷歌推出的开源预训练语言模型
Gemma-2b是谷歌推出的开源预训练语言模型系列,提供了多个不同规模的变体。它可以生成高质量的文本,广泛应用于问答、摘要、推理等领域。相比其他同类模型,它模型规模较小,可以部署在不同的硬件环境中。Gemma系列追求安全、高效的人工智能技术,使更多研究者和开发者可以接触前沿的语言模型技术。
基于 Transformer 的预训练语言模型系列
Qwen1.5 是基于 Transformer 架构的解码器语言模型系列,包括不同规模的模型。具有 SwiGLU 激活、注意力 QKV 偏置、组查询注意力等特性。支持多种自然语言和代码。推荐进行后续训练,如 SFT、RLHF 等。定价免费。
基于 Transformer 的图像识别模型
Google Vision Transformer 是一款基于 Transformer 编码器的图像识别模型,使用大规模图像数据进行预训练,可用于图像分类等任务。该模型在 ImageNet-21k 数据集上进行了预训练,并在 ImageNet 数据集上进行了微调,具备良好的图像特征提取能力。该模型通过将图像切分为固定大小的图像块,并线性嵌入这些图像块来处理图像数据。同时,模型在输入序列前添加了位置编码,以便在 Transformer 编码器中处理序列数据。用户可以通过在预训练的编码器之上添加线性层进行图像分类等任务。Google Vision Transformer 的优势在于其强大的图像特征学习能力和广泛的适用性。该模型免费提供使用。
多语言预训练语言模型
「书生·浦语2.0」InternLM2是一个面向中文和英文的大型多语言预训练语言模型。它具有语言理解、自然语言生成、多模式推理、代码理解等强大的能力。模型采用Transformer架构并进行海量数据的预训练,在长文本理解、对话、数学运算等多个方向上都达到了业界领先水平。该系列模型包含多种规模,用户可以选择合适的模型进行下游任务微调或构建聊天机器人等应用。
开源的中英双语预训练语言模型
LingoWhale-8B是一个开源的大规模中英双语预训练语言模型,具有强大的自然语言理解和生成能力。它通过在海量高质量中英文数据上进行预训练,可以完成长文本的理解和多轮交互。该模型采用Transformer架构,参数量达80亿。它在多个中文和英文公开基准测试上都取得了领先的效果。LingoWhale-8B完全开放给学术研究使用,个人开发者可以免费用于商业用途。该模型可以广泛应用于聊天机器人、知识问答、文本生成等领域。
开源多模态预训练模型,具备中英双语对话能力。
GLM-4V-9B是智谱AI推出的新一代预训练模型,支持1120*1120高分辨率下的中英双语多轮对话,以及视觉理解能力。在多模态评测中,GLM-4V-9B展现出超越GPT-4-turbo-2024-04-09、Gemini 1.0 Pro、Qwen-VL-Max和Claude 3 Opus的卓越性能。
基于Linux环境快速部署开源大模型的教程
该项目是一个围绕开源大模型的全流程指导教程,包括环境配置、模型部署、高效微调等,简化开源大模型的使用和应用,让更多普通学习者能够使用开源大模型。项目面向对开源大模型感兴趣且想自主上手的学习者,提供详细的环境配置、模型部署和微调方法。
大规模自回归图像模型预训练
这篇论文介绍了AIM,这是一组使用自回归目标进行预训练的视觉模型。这些模型受其文本对应物,即大型语言模型(LLMs)的启发,并表现出类似的扩展特性。具体来说,我们强调了两个关键发现:(1)视觉特征的性能随着模型容量和数据量的增加而提高,(2)目标函数的价值与模型在下游任务上的性能相关。我们通过在20亿张图像上对70亿参数的AIM进行预训练,实现了在ImageNet-1k上使用冻结主干达到84.0%的准确率。有趣的是,即使在这个规模上,我们观察到性能没有饱和的迹象,这表明AIM可能代表了训练大规模视觉模型的新前沿。AIM的预训练类似于LLMs的预训练,并不需要任何图像特定的策略来稳定大规模训练。
深入理解Transformer模型的可视化工具
Transformer Explainer是一个致力于帮助用户深入理解Transformer模型的在线可视化工具。它通过图形化的方式展示了Transformer模型的各个组件,包括自注意力机制、前馈网络等,让用户能够直观地看到数据在模型中的流动和处理过程。该工具对于教育和研究领域具有重要意义,可以帮助学生和研究人员更好地理解自然语言处理领域的先进技术。
大型多语言预训练语言模型
Meta Llama 3.1-405B 是由 Meta 开发的一系列大型多语言预训练语言模型,包含8B、70B和405B三种规模的模型。这些模型经过优化的变压器架构,使用监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调优,以符合人类对帮助性和安全性的偏好。Llama 3.1 模型支持多种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。该模型在多种自然语言生成任务中表现出色,并在行业基准测试中超越了许多现有的开源和封闭聊天模型。
高性能的双向编码器Transformer模型
ModernBERT-large是一个现代化的双向编码器Transformer模型(BERT风格),在2万亿个英文和代码数据上预训练,具有长达8192个token的原生上下文长度。该模型采用了最新的架构改进,如旋转位置嵌入(RoPE)以支持长上下文,局部-全局交替注意力以提高长输入的效率,以及无填充和Flash Attention以提高推理效率。ModernBERT-long适合处理需要处理长文档的任务,如检索、分类和大型语料库中的语义搜索。模型训练数据主要是英文和代码,因此可能在其他语言上的表现会较低。
第二代多模态预训练对话模型
CogVLM2是由清华大学团队开发的第二代多模态预训练对话模型,它在多个基准测试中取得了显著的改进,支持8K内容长度和1344*1344的图像分辨率。CogVLM2系列模型提供了支持中文和英文的开源版本,能够与一些非开源模型相媲美的性能。
基于语言模型架构的预训练时间序列预测模型
Chronos是一系列基于语言模型架构的预训练时间序列预测模型。时间序列通过缩放和量化转换为一系列标记,然后使用交叉熵损失训练语言模型。训练完成后,通过给定历史上下文采样多个未来轨迹,获得概率性预测。Chronos模型已经在大量公开可用的时间序列数据和使用高斯过程生成的合成数据上进行了训练。
大规模训练 Transformer 模型的持续研究
Megatron-LM 是由 NVIDIA 应用深度学习研究团队开发的一种强大的大规模 Transformer 模型。该产品用于大规模训练 Transformer 语言模型的持续研究。我们使用混合精度,高效的模型并行和数据并行,以及多节点的 Transformer 模型(如 GPT、BERT 和 T5)的预训练。
新一代开源预训练模型,支持多语言和高级功能
GLM-4-9B是智谱AI推出的新一代预训练模型,属于GLM-4系列中的开源版本。它在语义、数学、推理、代码和知识等多方面的数据集测评中表现优异,具备多轮对话、网页浏览、代码执行、自定义工具调用和长文本推理等高级功能。此外,还支持包括日语、韩语、德语在内的26种语言,并有支持1M上下文长度的模型版本。
由Google Research开发的预训练时间序列预测模型。
TimesFM是一个由Google Research开发的预训练时间序列预测模型,用于时间序列预测任务。该模型在多个数据集上进行了预训练,能够处理不同频率和长度的时间序列数据。其主要优点包括高性能、可扩展性强以及易于使用。该模型适用于需要准确预测时间序列数据的各种应用场景,如金融、气象、能源等领域。该模型在Hugging Face平台上免费提供,用户可以方便地下载和使用。
文档智能的视觉引导生成文本布局预训练模型
ViTLP是一个视觉引导的生成文本布局预训练模型,旨在提高文档智能处理的效率和准确性。该模型结合了OCR文本定位和识别功能,能够在文档图像上进行快速准确的文本检测和识别。ViTLP模型的预训练版本ViTLP-medium(380M参数)在计算资源和预训练数据集规模的限制下,提供了一个平衡的解决方案,既保证了模型的性能,又优化了推理速度和内存使用。ViTLP的推理速度在Nvidia 4090上处理一页文档图像通常在5到10秒内,与大多数OCR引擎相比具有竞争力。
开源时空基础模型,用于交通预测
OpenCity是一个开源的时空基础模型,专注于交通预测领域。该模型通过整合Transformer架构和图神经网络,有效捕捉和标准化交通数据中的复杂时空依赖关系,实现对不同城市环境的零样本泛化。它在大规模、异构的交通数据集上进行预训练,学习到丰富、可泛化的表示,能够无缝应用于多种交通预测场景。
预训练T5模型,采用段落破坏和替换标记检测
SpacTor是一种新的训练程序,包括(1)结合了段落破坏(SC)和标记替换检测(RTD)的混合目标,以及(2)一个两阶段课程,该课程在初始tau次迭代中优化混合目标,然后过渡到标准的SC损失。我们在多种NLP任务上进行了实验,使用编码器-解码器架构(T5),SpacTor-T5在下游性能方面与标准的SC预训练相当,同时减少了50%的预训练迭代次数和40%的总FLOPs。另外,在相同的计算预算下,我们发现SpacTor能够显著提高下游基准性能。
Stability AI 生成模型是一个开源的生成模型库。
Stability AI 生成模型是一个开源的生成模型库,提供了各种生成模型的训练、推理和应用功能。该库支持各种生成模型的训练,包括基于 PyTorch Lightning 的训练,提供了丰富的配置选项和模块化的设计。用户可以使用该库进行生成模型的训练,并通过提供的模型进行推理和应用。该库还提供了示例训练配置和数据处理的功能,方便用户进行快速上手和定制。
新一代开源预训练模型,支持多轮对话和多语言。
GLM-4-9B-Chat-1M 是智谱 AI 推出的新一代预训练模型,属于 GLM-4 系列的开源版本。它在语义、数学、推理、代码和知识等多方面的数据集测评中展现出较高的性能。该模型不仅支持多轮对话,还具备网页浏览、代码执行、自定义工具调用和长文本推理等高级功能。支持包括日语、韩语、德语在内的26种语言,并特别推出了支持1M上下文长度的模型版本,适合需要处理大量数据和多语言环境的开发者和研究人员使用。
70B参数的多语言大型预训练语言模型
Meta Llama 3.3是一个70B参数的多语言大型预训练语言模型(LLM),专为多语言对话用例优化,并在常见行业基准测试中表现优于许多现有的开源和封闭聊天模型。该模型采用优化的Transformer架构,并使用监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来符合人类的有用性和安全性偏好。
新一代多语言预训练模型,性能卓越。
Qwen2是一系列经过预训练和指令调整的模型,支持多达27种语言,包括英语和中文。这些模型在多个基准测试中表现出色,特别是在编码和数学方面有显著提升。Qwen2模型的上下文长度支持高达128K个token,适用于处理长文本任务。此外,Qwen2-72B-Instruct模型在安全性方面与GPT-4相当,显著优于Mistral-8x22B模型。
基于大规模数据的高质量信息抽取模型
雅意信息抽取大模型(YAYI-UIE)由中科闻歌算法团队研发,是一款在百万级人工构造的高质量信息抽取数据上进行指令微调的模型。它能够统一训练信息抽取任务,包括命名实体识别(NER)、关系抽取(RE)和事件抽取(EE),覆盖了通用、安全、金融、生物、医疗、商业等多个场景的结构化抽取。该模型的开源旨在促进中文预训练大模型开源社区的发展,并通过开源共建雅意大模型生态。
大规模代码生成预训练模型
StarCoder2是一个1500亿参数的Transformer模型,在包括GitHub在内的600多种编程语言数据集上进行了预训练,使用了Grouped Query Attention等技术。该模型可用于代码生成任务,支持多种编程语言。
大规模多模态预训练数据集
allenai/olmo-mix-1124数据集是由Hugging Face提供的一个大规模多模态预训练数据集,主要用于训练和优化自然语言处理模型。该数据集包含了大量的文本信息,覆盖了多种语言,并且可以用于各种文本生成任务。它的重要性在于提供了一个丰富的资源,使得研究人员和开发者能够训练出更加精准和高效的语言模型,进而推动自然语言处理技术的发展。
开源的先进语言模型后训练框架
Tülu 3是一系列开源的先进语言模型,它们经过后训练以适应更多的任务和用户。这些模型通过结合专有方法的部分细节、新颖技术和已建立的学术研究,实现了复杂的训练过程。Tülu 3的成功根植于精心的数据管理、严格的实验、创新的方法论和改进的训练基础设施。通过公开分享数据、配方和发现,Tülu 3旨在赋予社区探索新的和创新的后训练方法的能力。
多语言预训练数据集
FineWeb2是由Hugging Face提供的一个大规模多语言预训练数据集,覆盖超过1000种语言。该数据集经过精心设计,用于支持自然语言处理(NLP)模型的预训练和微调,特别是在多种语言上。它以其高质量、大规模和多样性而闻名,能够帮助模型学习跨语言的通用特征,提升在特定语言任务上的表现。FineWeb2在多个语言的预训练数据集中表现出色,甚至在某些情况下,比一些专门为单一语言设计的数据库表现更好。
© 2025 AIbase 备案号:闽ICP备08105208号-14