需求人群:
"FineWeb2的目标受众是自然语言处理领域的研究人员、开发者和企业。研究人员可以使用这个数据集来训练和测试多语言NLP模型,开发者可以利用它来开发跨语言的应用,而企业则可以利用FineWeb2提升其产品在全球化市场中的竞争力。"
使用场景示例:
用于训练一个能够理解多种语言的聊天机器人。
作为开发一个支持多国语言文本翻译应用的数据基础。
用于分析不同语言中的情感倾向,以优化产品的本地化策略。
产品特色:
支持超过1000种语言的文本数据,覆盖广泛的语言和方言。
数据来源自CommonCrawl的96个快照,时间跨度从2013年夏季到2024年4月。
经过严格的去重和过滤处理,确保数据集的质量和可用性。
提供了大量的文本数据,总计约3万亿词,压缩后数据量约为8TB。
适用于各种NLP任务,如文本生成、翻译、情感分析等。
数据集完全可复现,遵循开放的ODC-By 1.0许可,便于研究和商业使用。
通过数百个消融实验进行了广泛的验证,确保数据集的有效性和可靠性。
使用教程:
1. 访问Hugging Face网站并搜索FineWeb2数据集。
2. 选择合适的语言和所需的数据子集进行下载。
3. 使用Hugging Face提供的数据处理工具对数据进行预处理。
4. 将预处理后的数据用于训练NLP模型或进行数据分析。
5. 根据需要对模型进行微调,以适应特定的NLP任务。
6. 在实际应用中部署训练好的模型,并持续优化性能。
浏览量:30
最新流量情况
月访问量
25296.55k
平均访问时长
00:04:45
每次访问页数
5.83
跳出率
43.31%
流量来源
直接访问
48.39%
自然搜索
35.85%
邮件
0.03%
外链引荐
12.76%
社交媒体
2.96%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
多语言预训练数据集
FineWeb2是由Hugging Face提供的一个大规模多语言预训练数据集,覆盖超过1000种语言。该数据集经过精心设计,用于支持自然语言处理(NLP)模型的预训练和微调,特别是在多种语言上。它以其高质量、大规模和多样性而闻名,能够帮助模型学习跨语言的通用特征,提升在特定语言任务上的表现。FineWeb2在多个语言的预训练数据集中表现出色,甚至在某些情况下,比一些专门为单一语言设计的数据库表现更好。
大型多语言预训练语言模型
Meta Llama 3.1-405B 是由 Meta 开发的一系列大型多语言预训练语言模型,包含8B、70B和405B三种规模的模型。这些模型经过优化的变压器架构,使用监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调优,以符合人类对帮助性和安全性的偏好。Llama 3.1 模型支持多种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。该模型在多种自然语言生成任务中表现出色,并在行业基准测试中超越了许多现有的开源和封闭聊天模型。
70B参数的多语言大型预训练语言模型
Meta Llama 3.3是一个70B参数的多语言大型预训练语言模型(LLM),专为多语言对话用例优化,并在常见行业基准测试中表现优于许多现有的开源和封闭聊天模型。该模型采用优化的Transformer架构,并使用监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来符合人类的有用性和安全性偏好。
多语言预训练语言模型
「书生·浦语2.0」InternLM2是一个面向中文和英文的大型多语言预训练语言模型。它具有语言理解、自然语言生成、多模式推理、代码理解等强大的能力。模型采用Transformer架构并进行海量数据的预训练,在长文本理解、对话、数学运算等多个方向上都达到了业界领先水平。该系列模型包含多种规模,用户可以选择合适的模型进行下游任务微调或构建聊天机器人等应用。
新一代多语言预训练模型,性能卓越。
Qwen2是一系列经过预训练和指令调整的模型,支持多达27种语言,包括英语和中文。这些模型在多个基准测试中表现出色,特别是在编码和数学方面有显著提升。Qwen2模型的上下文长度支持高达128K个token,适用于处理长文本任务。此外,Qwen2-72B-Instruct模型在安全性方面与GPT-4相当,显著优于Mistral-8x22B模型。
新一代开源预训练模型,支持多语言和高级功能
GLM-4-9B是智谱AI推出的新一代预训练模型,属于GLM-4系列中的开源版本。它在语义、数学、推理、代码和知识等多方面的数据集测评中表现优异,具备多轮对话、网页浏览、代码执行、自定义工具调用和长文本推理等高级功能。此外,还支持包括日语、韩语、德语在内的26种语言,并有支持1M上下文长度的模型版本。
新一代开源预训练模型,支持多轮对话和多语言。
GLM-4-9B-Chat-1M 是智谱 AI 推出的新一代预训练模型,属于 GLM-4 系列的开源版本。它在语义、数学、推理、代码和知识等多方面的数据集测评中展现出较高的性能。该模型不仅支持多轮对话,还具备网页浏览、代码执行、自定义工具调用和长文本推理等高级功能。支持包括日语、韩语、德语在内的26种语言,并特别推出了支持1M上下文长度的模型版本,适合需要处理大量数据和多语言环境的开发者和研究人员使用。
新一代多语言预训练模型,支持长文本和代码执行。
GLM-4-9B-Chat是智谱AI推出的新一代预训练模型GLM-4系列中的开源版本,具备多轮对话、网页浏览、代码执行、自定义工具调用和长文本推理等高级功能。支持包括日语、韩语、德语在内的26种语言,并且推出了支持1M上下文长度的模型。
开源多语言多模态对话模型
GLM-4系列是智谱AI推出的新一代预训练模型,包括GLM-4-9B、GLM-4-9B-Chat、GLM-4-9B-Chat-1M和GLM-4V-9B。这些模型在语义理解、数学推理、代码执行等方面表现出色,支持多达26种语言,并具备网页浏览、代码执行等高级功能。GLM-4V-9B模型还具备高分辨率的视觉理解能力,适合多模态应用场景。
多语言对话生成模型
Meta Llama 3.1系列模型是一套预训练和指令调整的多语言大型语言模型(LLMs),包含8B、70B和405B三种规模的模型,专为多语言对话使用案例优化,性能优于许多开源和闭源聊天模型。
多语言大型语言模型,支持23种语言
Aya Expanse是一个具有高级多语言能力的开放权重研究模型。它专注于将高性能的预训练模型与Cohere For AI一年的研究成果相结合,包括数据套利、多语言偏好训练、安全调整和模型合并。该模型是一个强大的多语言大型语言模型,服务于23种语言,包括阿拉伯语、中文(简体和繁体)、捷克语、荷兰语、英语、法语、德语、希腊语、希伯来语、印地语、印尼语、意大利语、日语、韩语、波斯语、波兰语、葡萄牙语、罗马尼亚语、俄语、西班牙语、土耳其语、乌克兰语和越南语。
基于 Transformer 的预训练语言模型系列
Qwen1.5 是基于 Transformer 架构的解码器语言模型系列,包括不同规模的模型。具有 SwiGLU 激活、注意力 QKV 偏置、组查询注意力等特性。支持多种自然语言和代码。推荐进行后续训练,如 SFT、RLHF 等。定价免费。
轻松实现多语言翻译
Plane是一款基于人工智能技术的多语言翻译工具。它可以快速准确地将文本翻译成多种语言,帮助用户在跨语言交流中解决语言障碍。该助手具有高度的准确性和实时性,同时支持多种语言的互译功能。用户可以通过输入文本或上传文件进行翻译,还可以保存翻译记录和设置常用语言,提高翻译效率。
开源的中英双语预训练语言模型
LingoWhale-8B是一个开源的大规模中英双语预训练语言模型,具有强大的自然语言理解和生成能力。它通过在海量高质量中英文数据上进行预训练,可以完成长文本的理解和多轮交互。该模型采用Transformer架构,参数量达80亿。它在多个中文和英文公开基准测试上都取得了领先的效果。LingoWhale-8B完全开放给学术研究使用,个人开发者可以免费用于商业用途。该模型可以广泛应用于聊天机器人、知识问答、文本生成等领域。
多语言模型问答助手
Snack AI是一款多语言模型问答助手,可以同时向多个语言模型提问并获取答案。它能够帮助用户快速获取准确的信息,并提供丰富的功能和使用场景。Snack AI的定价灵活多样,适合个人用户和企业用户的不同需求。
谷歌推出的开源预训练语言模型
Gemma-2b是谷歌推出的开源预训练语言模型系列,提供了多个不同规模的变体。它可以生成高质量的文本,广泛应用于问答、摘要、推理等领域。相比其他同类模型,它模型规模较小,可以部署在不同的硬件环境中。Gemma系列追求安全、高效的人工智能技术,使更多研究者和开发者可以接触前沿的语言模型技术。
预训练T5模型,采用段落破坏和替换标记检测
SpacTor是一种新的训练程序,包括(1)结合了段落破坏(SC)和标记替换检测(RTD)的混合目标,以及(2)一个两阶段课程,该课程在初始tau次迭代中优化混合目标,然后过渡到标准的SC损失。我们在多种NLP任务上进行了实验,使用编码器-解码器架构(T5),SpacTor-T5在下游性能方面与标准的SC预训练相当,同时减少了50%的预训练迭代次数和40%的总FLOPs。另外,在相同的计算预算下,我们发现SpacTor能够显著提高下游基准性能。
1T开源多语言大型语言模型
Tele-FLM-1T是一个开源的1T多语言大型语言模型,基于解码器仅Transformer架构,经过约2T tokens的训练。该模型在规模上展现出卓越的性能,有时甚至超越了更大的模型。除了分享模型权重外,还提供了核心设计、工程实践和训练细节,期待对学术和工业社区都有所裨益。
大型语言模型,支持多语言和代码数据
Mistral-Nemo-Instruct-2407是由Mistral AI和NVIDIA联合训练的大型语言模型(LLM),是Mistral-Nemo-Base-2407的指导微调版本。该模型在多语言和代码数据上进行了训练,显著优于大小相似或更小的现有模型。其主要特点包括:支持多语言和代码数据训练、128k上下文窗口、可替代Mistral 7B。模型架构包括40层、5120维、128头维、1436隐藏维、32个头、8个kv头(GQA)、2^17词汇量(约128k)、旋转嵌入(theta=1M)。该模型在多种基准测试中表现出色,如HellaSwag(0-shot)、Winogrande(0-shot)、OpenBookQA(0-shot)等。
多语言大型语言模型
Llama-3.2-1B是由Meta公司发布的多语言大型语言模型,专注于文本生成任务。该模型使用优化的Transformer架构,并通过监督式微调(SFT)和人类反馈的强化学习(RLHF)进行调优,以符合人类对有用性和安全性的偏好。该模型支持8种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语,并在多种对话使用案例中表现优异。
多语言大型语言模型
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
AI驱动的多语言翻译服务
Spoken AI是一个独立的在线服务,致力于通过先进的机器学习语言模型,提供超越传统逐字翻译的更准确、更流畅的机器翻译服务。作为全球首家大规模方言翻译器,我们的平台能够准确翻译超过300种语言和方言,这使我们与其他翻译服务区别开来。
AI平台,多语言生成商业创意
IdeaSpark是一个AI平台,帮助您在5种以上的语言中生成商业创意。解锁您的创造力,探索各种行业的机遇。该平台提供了生成商业创意、市场研究、商业模式、商业计划等工具,帮助您验证和推进创业项目。
多语言生成语言模型
Aya模型是一个大规模的多语言生成性语言模型,能够在101种语言中遵循指令。该模型在多种自动和人类评估中优于mT0和BLOOMZ,尽管它覆盖的语言数量是后者的两倍。Aya模型使用包括xP3x、Aya数据集、Aya集合、DataProvenance集合的一个子集和ShareGPT-Command等多个数据集进行训练,并在Apache-2.0许可下发布,以推动多语言技术的发展。
多语言指令微调的大型语言模型
Aya-23-8B是由Cohere For AI开发的指令微调模型,具有23种语言的强大多语言能力,专注于将高性能预训练模型与Aya Collection结合,为研究人员提供高性能的多语言模型。
© 2025 AIbase 备案号:闽ICP备08105208号-14