需求人群:
"Meta Llama 3 适合需要进行自然语言处理任务的研究人员、开发者和企业。其广泛的参数规模和灵活的部署方式使其能够适应从学术研究到商业应用的各种需求。研究人员可以利用其进行语言模型的基础研究,开发者可以将其集成到应用程序中提供智能对话或内容生成功能,企业则可以利用其进行数据分析和决策支持。"
使用场景示例:
研究人员使用 Meta Llama 3 进行语言模型的学术研究,探索其在语言理解、生成等方面的能力。
开发者利用 Meta Llama 3 为聊天应用提供智能对话功能,提升用户体验。
企业通过 Meta Llama 3 进行文本分析,辅助决策制定和市场预测。
产品特色:
支持从8B到70B参数规模的多种预训练模型
提供指令调优功能,提升模型在特定任务上的表现
通过 GitHub 仓库提供模型代码和权重下载
支持本地推理,用户可以在自己的设备上运行模型
提供详细的使用指南和示例代码,方便用户快速上手
模型支持模型并行(MP)技术,适应不同硬件配置
模型支持序列长度高达8192个token,满足复杂任务需求
使用教程:
1. 访问 Meta Llama 3 的 GitHub 仓库并克隆到本地环境。
2. 在克隆的仓库中运行 `pip install -e .` 安装所需的依赖。
3. 访问 Meta Llama 网站并注册以下载模型。
4. 收到下载链接的邮件后,运行 `download.sh` 脚本并输入邮件中的 URL 下载模型权重和分词器。
5. 确保下载的模型权重和分词器文件路径正确,运行示例代码进行本地推理。
6. 根据需要调整模型并行(MP)值、序列长度和批处理大小等参数,以适应不同的硬件配置和任务需求。
7. 通过阅读仓库中的文档和示例代码,进一步了解模型的使用和优化方法。
浏览量:42
最新流量情况
月访问量
4.75m
平均访问时长
00:06:34
每次访问页数
6.10
跳出率
36.20%
流量来源
直接访问
52.19%
自然搜索
32.64%
邮件
0.04%
外链引荐
12.93%
社交媒体
2.02%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.32%
德国
3.68%
印度
9.04%
俄罗斯
3.92%
美国
19.25%
大型语言模型,支持多种参数规模
Meta Llama 3 是 Meta 推出的最新大型语言模型,旨在为个人、创作者、研究人员和各类企业解锁大型语言模型的能力。该模型包含从8B到70B参数的不同规模版本,支持预训练和指令调优。模型通过 GitHub 仓库提供,用户可以通过下载模型权重和分词器进行本地推理。Meta Llama 3 的发布标志着大型语言模型技术的进一步普及和应用,具有广泛的研究和商业潜力。
基于特定模型的量化大型语言模型,适用于自然语言处理等任务。
该模型是量化版大型语言模型,采用4位量化技术,降低存储与计算需求,适用于自然语言处理,参数量8.03B,免费且可用于非商业用途,适合资源受限环境下高性能语言应用需求者。
Sonus-1:开启大型语言模型(LLMs)的新时代
Sonus-1是Sonus AI推出的一系列大型语言模型(LLMs),旨在推动人工智能的边界。这些模型以其高性能和多应用场景的多功能性而设计,包括Sonus-1 Mini、Sonus-1 Air、Sonus-1 Pro和Sonus-1 Pro (w/ Reasoning)等不同版本,以满足不同需求。Sonus-1 Pro (w/ Reasoning)在多个基准测试中表现突出,特别是在推理和数学问题上,展现了其超越其他专有模型的能力。Sonus AI致力于开发高性能、可负担、可靠且注重隐私的大型语言模型。
多模态大型语言模型,展示卓越的整体性能。
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,它基于InternVL2.5和混合偏好优化构建。该模型整合了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL2.5-MPO在新版本中保留了与InternVL 2.5及其前身相同的模型架构,遵循“ViT-MLP-LLM”范式。该模型支持多图像和视频数据,通过混合偏好优化(MPO)进一步提升模型性能,使其在多模态任务中表现更优。
多模态大型语言模型,展示卓越的整体性能
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,基于InternVL2.5和混合偏好优化构建。该模型集成了新增量预训练的InternViT和各种预训练的大型语言模型,如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。它支持多图像和视频数据,并且在多模态任务中表现出色,能够理解和生成与图像相关的文本内容。
先进的多模态大型语言模型
InternVL2_5-2B-MPO是一个多模态大型语言模型系列,展示了卓越的整体性能。该系列基于InternVL2.5和混合偏好优化构建。它集成了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。该模型在多模态任务中表现出色,能够处理包括图像和文本在内的多种数据类型,适用于需要理解和生成多模态内容的场景。
多模态大型语言模型,提升视觉和语言的综合理解能力
InternVL2_5-1B-MPO是一个多模态大型语言模型(MLLM),它基于InternVL2.5和混合偏好优化(MPO)构建,展示了优越的整体性能。该模型集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL2.5-MPO在模型架构上保留了与InternVL 2.5及其前身相同的“ViT-MLP-LLM”范式,并引入了对多图像和视频数据的支持。该模型在多模态任务中表现出色,能够处理包括图像描述、视觉问答等多种视觉语言任务。
多模态大型语言模型,融合视觉与语言理解。
InternVL2_5-26B是一个先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,进一步发展而来。该模型保持了其前身的“ViT-MLP-LLM”核心模型架构,并集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),例如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5系列模型在多模态任务中展现出卓越的性能,尤其在视觉感知和多模态能力方面。
先进的多模态大型语言模型系列
InternVL 2.5是OpenGVLab推出的多模态大型语言模型系列,它在InternVL 2.0的基础上进行了显著的训练和测试策略增强,以及数据质量提升。该模型系列能够处理图像、文本和视频数据,具备多模态理解和生成的能力,是当前多模态人工智能领域的前沿产品。InternVL 2.5系列模型以其高性能和开源特性,为多模态任务提供了强大的支持。
70B参数的多语言大型预训练语言模型
Meta Llama 3.3是一个70B参数的多语言大型预训练语言模型(LLM),专为多语言对话用例优化,并在常见行业基准测试中表现优于许多现有的开源和封闭聊天模型。该模型采用优化的Transformer架构,并使用监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来符合人类的有用性和安全性偏好。
大规模多模态预训练数据集
allenai/olmo-mix-1124数据集是由Hugging Face提供的一个大规模多模态预训练数据集,主要用于训练和优化自然语言处理模型。该数据集包含了大量的文本信息,覆盖了多种语言,并且可以用于各种文本生成任务。它的重要性在于提供了一个丰富的资源,使得研究人员和开发者能够训练出更加精准和高效的语言模型,进而推动自然语言处理技术的发展。
7B参数的大型语言模型,提升自然语言处理能力
OLMo 2 7B是由Allen Institute for AI (Ai2)开发的一款7B参数的大型语言模型,它在多个自然语言处理任务上展现出色的表现。该模型通过在大规模数据集上的训练,能够理解和生成自然语言,支持多种语言模型相关的科研和应用。OLMo 2 7B的主要优点包括其大规模的参数量,使得模型能够捕捉到更加细微的语言特征,以及其开源的特性,促进了学术界和工业界的进一步研究和应用。
124B参数的多模态大型语言模型
Pixtral-Large-Instruct-2411是由Mistral AI研发的124B参数的大型多模态模型,基于Mistral Large 2构建,展现出前沿级别的图像理解能力。该模型不仅能够理解文档、图表和自然图像,同时保持了Mistral Large 2在文本理解方面的领先地位。它在MathVista、DocVQA、VQAv2等数据集上达到了最先进的性能,是科研和商业应用的强大工具。
O1复制之旅:战略进展报告第一部分
O1-Journey是由上海交通大学GAIR研究组发起的一个项目,旨在复制和重新想象OpenAI的O1模型的能力。该项目提出了“旅程学习”的新训练范式,并构建了首个成功整合搜索和学习在数学推理中的模型。这个模型通过试错、纠正、回溯和反思等过程,成为处理复杂推理任务的有效方法。
多语言大型语言模型
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
高效单遍统一生成和检索框架,适用于大型语言模型。
OneGen是一个为大型语言模型(LLMs)设计的高效单遍生成和检索框架,用于微调生成、检索或混合任务。它的核心思想是将生成和检索任务整合到同一上下文中,通过将检索任务分配给以自回归方式生成的检索令牌,使得LLM能够在单次前向传递中执行两种任务。这种方法不仅降低了部署成本,还显著减少了推理成本,因为它避免了对查询进行两次前向传递计算的需求。
使大型语言模型在长文本问答中生成细粒度引用
LongCite是一个开源的模型,它通过训练大型语言模型(LLMs)来实现在长文本问答场景中生成准确的回答和精确的句级引用。该技术的重要性在于它能够提高问答系统的准确性和可信度,使用户能够验证输出信息的来源。LongCite支持高达128K的上下文长度,并且提供了两个模型:LongCite-glm4-9b和LongCite-llama3.1-8b,分别基于GLM-4-9B和Meta-Llama-3.1-8B进行训练。
利用大型语言模型增量构建知识图谱
iText2KG是一个Python包,旨在利用大型语言模型从文本文档中提取实体和关系,增量构建一致的知识图谱。它具备零样本能力,允许在没有特定训练的情况下跨不同领域进行知识提取。该包包括文档蒸馏、实体提取和关系提取模块,确保实体和关系得到解决和唯一性。它通过Neo4j提供知识图谱的可视化表示,支持交互式探索和分析结构化数据。
世界顶尖的开源大型语言模型
Reflection Llama-3.1 70B 是目前世界上顶尖的开源大型语言模型(LLM),采用名为 Reflection-Tuning 的新技术进行训练,使模型能够检测其推理中的错误并进行修正。该模型在合成数据上进行了训练,这些数据由 Glaive 生成。对于正在训练模型的用户来说,Glaive 是一个非常出色的工具。该模型使用标准的 Llama 3.1 聊天格式,通过特殊的标签来区分模型的内部思考和最终答案,从而提升用户体验。
高效开源的大型语言模型
OLMoE-1B-7B 是一个具有1亿活跃参数和7亿总参数的专家混合型大型语言模型(LLM),于2024年9月发布。该模型在成本相似的模型中表现卓越,与更大的模型如Llama2-13B竞争。OLMoE完全开源,支持多种功能,包括文本生成、模型训练和部署等。
开源的专家混合语言模型,具有1.3亿活跃参数。
OLMoE是一个完全开放的、最先进的专家混合模型,具有1.3亿活跃参数和6.9亿总参数。该模型的所有数据、代码和日志都已发布。它提供了论文'OLMoE: Open Mixture-of-Experts Language Models'的所有资源概览。该模型在预训练、微调、适应和评估方面都具有重要应用,是自然语言处理领域的一个里程碑。
大型多语言预训练语言模型
Meta Llama 3.1-405B 是由 Meta 开发的一系列大型多语言预训练语言模型,包含8B、70B和405B三种规模的模型。这些模型经过优化的变压器架构,使用监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调优,以符合人类对帮助性和安全性的偏好。Llama 3.1 模型支持多种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。该模型在多种自然语言生成任务中表现出色,并在行业基准测试中超越了许多现有的开源和封闭聊天模型。
大型语言模型,支持多语言和代码数据
Mistral-Nemo-Instruct-2407是由Mistral AI和NVIDIA联合训练的大型语言模型(LLM),是Mistral-Nemo-Base-2407的指导微调版本。该模型在多语言和代码数据上进行了训练,显著优于大小相似或更小的现有模型。其主要特点包括:支持多语言和代码数据训练、128k上下文窗口、可替代Mistral 7B。模型架构包括40层、5120维、128头维、1436隐藏维、32个头、8个kv头(GQA)、2^17词汇量(约128k)、旋转嵌入(theta=1M)。该模型在多种基准测试中表现出色,如HellaSwag(0-shot)、Winogrande(0-shot)、OpenBookQA(0-shot)等。
52B参数的开源多语言大型语言模型
Tele-FLM(亦称FLM-2)是一个52亿参数的开源多语言大型语言模型,具有稳定高效的预训练范式和增强的事实判断能力。基于解码器仅变换器架构,已在大约2T的token上进行训练。Tele-FLM在同等规模上展现出优越的性能,有时甚至超越了更大的模型。除了分享模型权重外,我们还提供了核心设计、工程实践和训练细节,期待它们对学术界和工业界社区都有所裨益。
轻量级大语言模型,专注于文本生成。
Index-1.9B-Pure是Index系列模型中的轻量版本,专为文本生成而设计。它在2.8T的中英文语料上进行了预训练,与同等级模型相比,在多个评测基准上表现领先。该模型特别过滤了所有指令相关数据,以验证指令对benchmark的影响,适用于需要高质量文本生成的领域。
基于大规模数据的高质量信息抽取模型
雅意信息抽取大模型(YAYI-UIE)由中科闻歌算法团队研发,是一款在百万级人工构造的高质量信息抽取数据上进行指令微调的模型。它能够统一训练信息抽取任务,包括命名实体识别(NER)、关系抽取(RE)和事件抽取(EE),覆盖了通用、安全、金融、生物、医疗、商业等多个场景的结构化抽取。该模型的开源旨在促进中文预训练大模型开源社区的发展,并通过开源共建雅意大模型生态。
开源多语言多模态对话模型
GLM-4系列是智谱AI推出的新一代预训练模型,包括GLM-4-9B、GLM-4-9B-Chat、GLM-4-9B-Chat-1M和GLM-4V-9B。这些模型在语义理解、数学推理、代码执行等方面表现出色,支持多达26种语言,并具备网页浏览、代码执行等高级功能。GLM-4V-9B模型还具备高分辨率的视觉理解能力,适合多模态应用场景。
大型语言模型的详细列表和信息
Models Table 提供了一个包含300多个大型语言模型的列表,这些模型被所有主要的AI实验室使用,包括Amazon Olympus, OpenAI GPT-5, OpenAI GPT-6等。该列表展示了大型语言模型的发展趋势和多样性,对于AI研究者和开发者来说是一个宝贵的资源。
© 2025 AIbase 备案号:闽ICP备08105208号-14