需求人群:
"目标受众为研究人员和开发者,特别是那些需要处理长文本和多模态数据集的专业人士。Aria-Base-64K提供了强大的预训练模型,可以用于视频问答、长文档问答等场景,帮助他们提高处理效率和准确性。"
使用场景示例:
- 使用Aria-Base-64K进行视频问答系统的开发,提高视频内容理解能力。
- 将Aria-Base-64K应用于长文档问答,提升文档检索和理解的效率。
- 利用Aria-Base-64K进行图像和文本的联合推理,开发新的多模态应用。
产品特色:
- 长文本预训练:经过33B个token的训练,适合长视频问答和长文档问答数据集的继续预训练或微调。
- 多模态理解:能够理解多达250张高分辨率图像或多达500张中等分辨率图像。
- 强大的基础性能:在语言和多模态场景中保持与Aria-Base-8K相同的强大基础性能。
- 低比例聊天模板训练:仅用约3%的数据进行了聊天模板格式的训练,可能不适合直接用于聊天模板。
- 快速启动支持:提供了快速安装和推理的代码示例,便于用户快速开始使用模型。
- 高级推理和微调:提供了代码库,支持更高级的推理、示例和自定义数据集上的微调。
使用教程:
1. 安装必要的库:使用pip安装transformers、accelerate、sentencepiece等库。
2. 加载模型:通过AutoModelForCausalLM.from_pretrained加载Aria-Base-64K模型。
3. 处理输入:使用AutoProcessor.from_pretrained处理输入文本和图像。
4. 进行推理:将处理好的输入传递给模型,执行生成操作。
5. 解码输出:使用处理器解码模型输出的token,得到最终结果。
6. 高级使用:根据需要,可以访问GitHub上的代码库,进行更高级的推理和微调。
浏览量:21
最新流量情况
月访问量
23904.81k
平均访问时长
00:04:51
每次访问页数
5.82
跳出率
43.33%
流量来源
直接访问
48.28%
自然搜索
35.88%
邮件
0.03%
外链引荐
12.71%
社交媒体
3.06%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
多模态大型语言模型,支持图像和文本处理。
Llama-3.2-11B-Vision 是 Meta 发布的一款多模态大型语言模型(LLMs),它结合了图像和文本处理的能力,旨在提高视觉识别、图像推理、图像描述和回答有关图像的一般问题的性能。该模型在常见的行业基准测试中的表现超过了众多开源和封闭的多模态模型。
高效能长文本处理AI模型
Jamba 1.5 Open Model Family是AI21公司推出的最新AI模型系列,基于SSM-Transformer架构,具有超长文本处理能力、高速度和高质量,是市场上同类产品中表现最优的。这些模型专为企业级应用设计,考虑了资源效率、质量、速度和解决关键任务的能力。
多模态原生Mixture-of-Experts模型
Aria-Base-64K是Aria系列的基础模型之一,专为研究目的和继续训练而设计。该模型在长文本预训练阶段后形成,经过33B个token(21B多模态,12B语言,69%为长文本)的训练。它适合于长视频问答数据集或长文档问答数据集的继续预训练或微调,即使在资源有限的情况下,也可以通过短指令调优数据集进行后训练,并转移到长文本问答场景。该模型能够理解多达250张高分辨率图像或多达500张中等分辨率图像,并在语言和多模态场景中保持强大的基础性能。
高效能的长文本处理AI模型
AI21-Jamba-1.5-Mini是AI21实验室开发的最新一代混合SSM-Transformer指令跟随基础模型。这款模型以其卓越的长文本处理能力、速度和质量在市场上脱颖而出,相较于同类大小的领先模型,推理速度提升高达2.5倍。Jamba 1.5 Mini和Jamba 1.5 Large专为商业用例和功能进行了优化,如函数调用、结构化输出(JSON)和基础生成。
Gemini 2.0 Flash-Lite 是高效的语言模型,专为长文本处理和多种应用场景优化。
Gemini 2.0 Flash-Lite 是 Google 推出的高效语言模型,专为长文本处理和复杂任务优化。它在推理、多模态、数学和事实性基准测试中表现出色,具备简化的价格策略,使得百万级上下文窗口更加经济实惠。Gemini 2.0 Flash-Lite 已在 Google AI Studio 和 Vertex AI 中全面开放,适合企业级生产使用。
高效处理长文本的双向编码器模型
ModernBERT-base是一个现代化的双向编码器Transformer模型,预训练于2万亿英文和代码数据,原生支持长达8192个token的上下文。该模型采用了Rotary Positional Embeddings (RoPE)、Local-Global Alternating Attention和Unpadding等最新架构改进,使其在长文本处理任务中表现出色。ModernBERT-base适用于需要处理长文档的任务,如检索、分类和大型语料库中的语义搜索。模型训练数据主要为英文和代码,因此可能在其他语言上的表现会有所降低。
新一代开源预训练模型,支持多轮对话和多语言。
GLM-4-9B-Chat-1M 是智谱 AI 推出的新一代预训练模型,属于 GLM-4 系列的开源版本。它在语义、数学、推理、代码和知识等多方面的数据集测评中展现出较高的性能。该模型不仅支持多轮对话,还具备网页浏览、代码执行、自定义工具调用和长文本推理等高级功能。支持包括日语、韩语、德语在内的26种语言,并特别推出了支持1M上下文长度的模型版本,适合需要处理大量数据和多语言环境的开发者和研究人员使用。
大规模多模态预训练数据集
allenai/olmo-mix-1124数据集是由Hugging Face提供的一个大规模多模态预训练数据集,主要用于训练和优化自然语言处理模型。该数据集包含了大量的文本信息,覆盖了多种语言,并且可以用于各种文本生成任务。它的重要性在于提供了一个丰富的资源,使得研究人员和开发者能够训练出更加精准和高效的语言模型,进而推动自然语言处理技术的发展。
第二代多模态预训练对话模型
CogVLM2是由清华大学团队开发的第二代多模态预训练对话模型,它在多个基准测试中取得了显著的改进,支持8K内容长度和1344*1344的图像分辨率。CogVLM2系列模型提供了支持中文和英文的开源版本,能够与一些非开源模型相媲美的性能。
新一代多语言预训练模型,性能卓越。
Qwen2是一系列经过预训练和指令调整的模型,支持多达27种语言,包括英语和中文。这些模型在多个基准测试中表现出色,特别是在编码和数学方面有显著提升。Qwen2模型的上下文长度支持高达128K个token,适用于处理长文本任务。此外,Qwen2-72B-Instruct模型在安全性方面与GPT-4相当,显著优于Mistral-8x22B模型。
前沿级别的AI模型,提供顶级的指令遵循和长文本处理能力。
EXAONE 3.5是LG AI Research发布的一系列人工智能模型,这些模型以其卓越的性能和成本效益而著称。它们在模型训练效率、去污染处理、长文本理解和指令遵循能力方面表现出色。EXAONE 3.5模型的开发遵循了LG的AI伦理原则,进行了AI伦理影响评估,以确保模型的负责任使用。这些模型的发布旨在推动AI研究和生态系统的发展,并为AI创新奠定基础。
新一代多语言预训练模型,支持长文本和代码执行。
GLM-4-9B-Chat是智谱AI推出的新一代预训练模型GLM-4系列中的开源版本,具备多轮对话、网页浏览、代码执行、自定义工具调用和长文本推理等高级功能。支持包括日语、韩语、德语在内的26种语言,并且推出了支持1M上下文长度的模型。
首个多模态 Mistral 模型,支持图像和文本的混合任务处理。
Pixtral 12B 是 Mistral AI 团队开发的一款多模态 AI 模型,它能够理解自然图像和文档,具备出色的多模态任务处理能力,同时在文本基准测试中也保持了最先进的性能。该模型支持多种图像尺寸和宽高比,能够在长上下文窗口中处理任意数量的图像,是 Mistral Nemo 12B 的升级版,专为多模态推理而设计,不牺牲关键文本处理能力。
AI21推出的Jamba 1.6模型,专为企业私有部署设计,具备卓越的长文本处理能力。
Jamba 1.6 是 AI21 推出的最新语言模型,专为企业私有部署而设计。它在长文本处理方面表现出色,能够处理长达 256K 的上下文窗口,采用混合 SSM-Transformer 架构,可高效准确地处理长文本问答任务。该模型在质量上超越了 Mistral、Meta 和 Cohere 等同类模型,同时支持灵活的部署方式,包括在本地或 VPC 中私有部署,确保数据安全。它为企业提供了一种无需在数据安全和模型质量之间妥协的解决方案,适用于需要处理大量数据和长文本的场景,如研发、法律和金融分析等。目前,Jamba 1.6 已在多个企业中得到应用,如 Fnac 使用其进行数据分类,Educa Edtech 利用其构建个性化聊天机器人等。
多模态大型模型,处理文本、图像和视频数据
Valley-Eagle-7B是由字节跳动开发的多模态大型模型,旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,并在OpenCompass测试中展现出与同规模模型相比的卓越性能。Valley-Eagle-7B结合了LargeMLP和ConvAdapter构建投影器,并引入了VisionEncoder,以增强模型在极端场景下的性能。
开源多模态预训练模型,具备中英双语对话能力。
GLM-4V-9B是智谱AI推出的新一代预训练模型,支持1120*1120高分辨率下的中英双语多轮对话,以及视觉理解能力。在多模态评测中,GLM-4V-9B展现出超越GPT-4-turbo-2024-04-09、Gemini 1.0 Pro、Qwen-VL-Max和Claude 3 Opus的卓越性能。
高效处理长文本的先进语言模型
Qwen2.5-Turbo是阿里巴巴开发团队推出的一款能够处理超长文本的语言模型,它在Qwen2.5的基础上进行了优化,支持长达1M个token的上下文,相当于约100万英文单词或150万中文字符。该模型在1M-token Passkey Retrieval任务中实现了100%的准确率,并在RULER长文本评估基准测试中得分93.1,超越了GPT-4和GLM4-9B-1M。Qwen2.5-Turbo不仅在长文本处理上表现出色,还保持了短文本处理的高性能,且成本效益高,每1M个token的处理成本仅为0.3元。
多模态语言模型,融合文本和语音
Spirit LM是一个基础多模态语言模型,能够自由混合文本和语音。该模型基于一个7B预训练的文本语言模型,通过持续在文本和语音单元上训练来扩展到语音模式。语音和文本序列被串联为单个令牌流,并使用一个小的自动策划的语音-文本平行语料库,采用词级交错方法进行训练。Spirit LM有两个版本:基础版使用语音音素单元(HuBERT),而表达版除了音素单元外,还使用音高和风格单元来模拟表达性。对于两个版本,文本都使用子词BPE令牌进行编码。该模型不仅展现了文本模型的语义能力,还展现了语音模型的表达能力。此外,我们展示了Spirit LM能够在少量样本的情况下跨模态学习新任务(例如ASR、TTS、语音分类)。
先进的多模态大型语言模型,具备卓越的多模态推理能力。
InternVL2_5-26B-MPO-AWQ 是由 OpenGVLab 开发的多模态大型语言模型,旨在通过混合偏好优化提升模型的推理能力。该模型在多模态任务中表现出色,能够处理图像和文本之间的复杂关系。它采用了先进的模型架构和优化技术,使其在多模态数据处理方面具有显著优势。该模型适用于需要高效处理和理解多模态数据的场景,如图像描述生成、多模态问答等。其主要优点包括强大的推理能力和高效的模型架构。
多模态大型语言模型,优化图像与文本交互能力
InternVL2_5-4B-MPO-AWQ是一个多模态大型语言模型(MLLM),专注于提升模型在图像和文本交互任务中的表现。该模型基于InternVL2.5系列,并通过混合偏好优化(MPO)进一步提升性能。它能够处理包括单图像和多图像、视频数据在内的多种输入,适用于需要图像和文本交互理解的复杂任务。InternVL2_5-4B-MPO-AWQ以其卓越的多模态能力,为图像-文本到文本的任务提供了一个强大的解决方案。
AI21 Jamba Large 1.6 是一款强大的混合 SSM-Transformer 架构基础模型,擅长长文本处理和高效推理。
AI21-Jamba-Large-1.6 是由 AI21 Labs 开发的混合 SSM-Transformer 架构基础模型,专为长文本处理和高效推理而设计。该模型在长文本处理、推理速度和质量方面表现出色,支持多种语言,并具备强大的指令跟随能力。它适用于需要处理大量文本数据的企业级应用,如金融分析、内容生成等。该模型采用 Jamba Open Model License 授权,允许在许可条款下进行研究和商业使用。
256M参数的医学领域语言模型,用于医学文本处理等任务
SmolDocling-256M-preview是由ds4sd推出的一个具有256M参数的语言模型,专注于医学领域。其重要性在于为医学文本处理、医学知识提取等任务提供了有效的工具。在医学研究和临床实践中,大量的文本数据需要进行分析和处理,该模型能够理解和处理医学专业语言。主要优点包括在医学领域有较好的性能表现,能够处理多种医学相关的文本任务,如疾病诊断辅助、医学文献摘要等。该模型的背景是随着医学数据的增长,对处理医学文本的技术需求日益增加。其定位是为医学领域的研究人员、医生、开发者等提供语言处理能力支持,目前未提及价格相关信息。
开源多语言多模态对话模型
GLM-4系列是智谱AI推出的新一代预训练模型,包括GLM-4-9B、GLM-4-9B-Chat、GLM-4-9B-Chat-1M和GLM-4V-9B。这些模型在语义理解、数学推理、代码执行等方面表现出色,支持多达26种语言,并具备网页浏览、代码执行等高级功能。GLM-4V-9B模型还具备高分辨率的视觉理解能力,适合多模态应用场景。
国际领先的语言理解与长文本处理大模型。
GLM-4-Plus是智谱推出的一款基座大模型,它在语言理解、指令遵循和长文本处理等方面性能得到全面提升,保持了国际领先水平。该模型的推出,不仅代表了中国在大模型领域的创新和突破,还为开发者和企业提供了强大的语言处理能力,进一步推动了人工智能技术的发展和应用。
大型多模态模型,集成表格数据
TableGPT2是一个大型多模态模型,专门针对表格数据进行预训练和微调,以解决实际应用中表格数据整合不足的问题。该模型在超过593.8K的表格和2.36M的高质量查询-表格-输出元组上进行了预训练和微调,规模前所未有。TableGPT2的关键创新之一是其新颖的表格编码器,专门设计用于捕获模式级别和单元格级别的信息,增强了模型处理模糊查询、缺失列名和不规则表格的能力。在23个基准测试指标上,TableGPT2在7B模型上平均性能提升了35.20%,在72B模型上提升了49.32%,同时保持了强大的通用语言和编码能力。
增强文本与视觉任务处理能力的开源模型。
Mistral-Small-3.1-24B-Base-2503 是一款具有 240 亿参数的先进开源模型,支持多语言和长上下文处理,适用于文本与视觉任务。它是 Mistral Small 3.1 的基础模型,具有较强的多模态能力,适合企业需求。
HyperGAI推出的创新多模态LLM框架,旨在理解和处理文本、图像、视频等多种输入模态
HPT(Hyper-Pretrained Transformers)是HyperGAI研究团队推出的新型多模态大型语言模型框架,它能够高效且可扩展地训练大型多模态基础模型,理解包括文本、图像、视频等多种输入模态。HPT框架可以从头开始训练,也可以通过现有的预训练视觉编码器和/或大型语言模型进行高效适配。
苹果发布多模态LLM模型MM1
苹果发布了自己的大语言模型MM1,这是一个最高有30B规模的多模态LLM。通过预训练和SFT,MM1模型在多个基准测试中取得了SOTA性能,展现了上下文内预测、多图像推理和少样本学习能力等吸引人的特性。
© 2025 AIbase 备案号:闽ICP备08105208号-14