需求人群:
"适用于需要处理和理解多模态数据的研究人员和开发者,如进行视觉-语言任务、图像分析、图表解读等。"
使用场景示例:
研究人员使用HPT Pro进行复杂的多模态任务研究
开发者利用HPT Air进行成本效益分析和视觉-语言任务处理
企业通过HPT模型提供的产品,增强其服务的视觉理解和用户交互能力
产品特色:
多模态理解,包括文本、图像、视频等
HPT Pro模型在多个基准测试中超越了GPT-4V和Gemini Pro等更大的模型
HPT Air模型作为开源版本,性能在类似或更小尺寸的模型中领先
浏览量:132
人工智能入门教程网站,提供全面的机器学习与深度学习知识。
该网站由作者从 2015 年开始学习机器学习和深度学习,整理并编写的一系列实战教程。涵盖监督学习、无监督学习、深度学习等多个领域,既有理论推导,又有代码实现,旨在帮助初学者全面掌握人工智能的基础知识和实践技能。网站拥有独立域名,内容持续更新,欢迎大家关注和学习。
强大的多模态LLM,商业解决方案
Reka Core是一个GPT-4级别的多模态大型语言模型(LLM),具备图像、视频和音频的强大上下文理解能力。它是目前市场上仅有的两个商用综合多模态解决方案之一。Core在多模态理解、推理能力、编码和Agent工作流程、多语言支持以及部署灵活性方面表现出色。
HyperGAI推出的创新多模态LLM框架,旨在理解和处理文本、图像、视频等多种输入模态
HPT(Hyper-Pretrained Transformers)是HyperGAI研究团队推出的新型多模态大型语言模型框架,它能够高效且可扩展地训练大型多模态基础模型,理解包括文本、图像、视频等多种输入模态。HPT框架可以从头开始训练,也可以通过现有的预训练视觉编码器和/或大型语言模型进行高效适配。
提供AI和机器学习课程
Udacity人工智能学院提供包括深度学习、计算机视觉、自然语言处理和AI产品管理在内的AI培训和机器学习课程。这些课程旨在帮助学生掌握人工智能领域的最新技术,为未来的职业生涯打下坚实的基础。
一款轻量级的多模态语言模型安卓应用。
MNN-LLM 是一款高效的推理框架,旨在优化和加速大语言模型在移动设备和本地 PC 上的部署。它通过模型量化、混合存储和硬件特定优化,解决高内存消耗和计算成本的问题。MNN-LLM 在 CPU 基准测试中表现卓越,速度显著提升,适合需要隐私保护和高效推理的用户。
苹果发布多模态LLM模型MM1
苹果发布了自己的大语言模型MM1,这是一个最高有30B规模的多模态LLM。通过预训练和SFT,MM1模型在多个基准测试中取得了SOTA性能,展现了上下文内预测、多图像推理和少样本学习能力等吸引人的特性。
轻量级但功能强大的多模态模型家族。
Bunny 是一系列轻量级但功能强大的多模态模型,提供多种即插即用的视图编码器和语言主干网络。通过从更广泛的数据源进行精选选择,构建更丰富的训练数据,以补偿模型尺寸的减小。Bunny-v1.0-3B 模型在性能上超越了同类大小甚至更大的 MLLMs(7B)模型,并与 13B 模型性能相当。
一万亿Token和34亿张图像的多模态数据集
MINT-1T是由Salesforce AI开源的多模态数据集,包含一万亿个文本标记和34亿张图像,规模是现有开源数据集的10倍。它不仅包含HTML文档,还包括PDF文档和ArXiv论文,丰富了数据集的多样性。MINT-1T的数据集构建涉及多种来源的数据收集、处理和过滤步骤,确保了数据的高质量和多样性。
为深度学习和人工智能构建的数据平台
VAST Data Platform 是世界上第一个为深度学习和人工智能构建的数据平台,采用突破性的数据密集计算方法,提供全面的软件基础设施,实时进行深度数据分析和深度学习,用于捕获、分类、细化、丰富和保护数据。它是 20 年来的第一个新的可扩展架构,专为未来 20 年的人工智能和大数据计算而设计。VAST Data Platform 允许将所有渲染资产放入一个无层级存储集群中,将这些 PB 级数据用作未来人工智能应用的训练数据。它还具有强大的 AI 能力,可支持对大规模视频、音频和文本数据集构建和训练 AI/ML 模型,从而实现全球无摩擦的通信体验。
推动人工智能安全治理,促进技术健康发展
《人工智能安全治理框架》1.0版是由全国网络安全标准化技术委员会发布的技术指南,旨在鼓励人工智能创新发展的同时,有效防范和化解人工智能安全风险。该框架提出了包容审慎、确保安全,风险导向、敏捷治理,技管结合、协同应对,开放合作、共治共享等原则。它结合人工智能技术特性,分析风险来源和表现形式,针对模型算法安全、数据安全和系统安全等内生安全风险,以及网络域、现实域、认知域、伦理域等应用安全风险,提出了相应的技术应对和综合防治措施。
京东自主研发的人工智能开放平台
京东人工智能开放平台NeuHub,汇聚京东自主研发的人工智能核心技术,包含语音、图像、视频、NLP等技术,通过平台向外开放,助力行业智能升级。平台还提供数据标注、模型开发、训练和发布等全流程服务,以及创新应用案例,帮助企业实现智能化转型。
统一多模态理解和生成的单一变换器
Show-o是一个用于多模态理解和生成的单一变换器模型,它能够处理图像字幕、视觉问答、文本到图像生成、文本引导的修复和扩展以及混合模态生成。该模型由新加坡国立大学的Show Lab和字节跳动共同开发,采用最新的深度学习技术,能够理解和生成多种模态的数据,是人工智能领域的一大突破。
多模态长篇故事生成模型
SEED-Story是一个基于大型语言模型(MLLM)的多模态长篇故事生成模型,能够根据用户提供的图片和文本生成丰富、连贯的叙事文本和风格一致的图片。它代表了人工智能在创意写作和视觉艺术领域的前沿技术,具有生成高质量、多模态故事内容的能力,为创意产业提供了新的可能性。
OLAMI是一个人工智能开放平台
OLAMI是一个提供云端API、管理界面、多元机器感知解决方案的人工智能软件开发平台。OLAMI平台具有语音识别、自然语言理解、对话管理、语音合成等语音AI技术,以及图像识别、语义理解等视觉AI技术,可以轻松地为产品加入人工智能,提升用户体验。
为人工智能提供多模态数据支持的高效数据库解决方案。
Activeloop Deep Lake是一个专为人工智能设计的数据库,支持多模态数据(如文本、图像、视频等)的高效存储和检索。它通过优化数据处理流程,帮助企业和开发者快速构建和部署AI应用,显著提升数据准备和模型训练的效率。Deep Lake的技术优势在于其高性能、可扩展性和易用性,使其成为AI开发中的重要基础设施。产品主要面向企业级用户和AI开发者,提供灵活的定价方案以满足不同规模用户的需求。
开源多模态大型语言模型系列
InternVL 2.5是基于InternVL 2.0的高级多模态大型语言模型系列,它在保持核心模型架构的同时,在训练和测试策略以及数据质量方面引入了显著的增强。该模型深入探讨了模型扩展与性能之间的关系,系统地探索了视觉编码器、语言模型、数据集大小和测试时配置的性能趋势。通过在包括多学科推理、文档理解、多图像/视频理解、现实世界理解、多模态幻觉检测、视觉定位、多语言能力和纯语言处理在内的广泛基准测试中进行的广泛评估,InternVL 2.5展现出了与GPT-4o和Claude-3.5-Sonnet等领先商业模型相媲美的竞争力。特别是,该模型是第一个在MMMU基准测试中超过70%的开源MLLM,通过链式思考(CoT)推理实现了3.7个百分点的提升,并展示了测试时扩展的强大潜力。
革命性AI技术,多模态智能互动
GPT-4o是OpenAI的最新创新,代表了人工智能技术的前沿。它通过真正的多模态方法扩展了GPT-4的功能,包括文本、视觉和音频。GPT-4o以其快速、成本效益和普遍可访问性,革命性地改变了我们与AI技术的互动。它在文本理解、图像分析和语音识别方面表现出色,提供流畅直观的AI互动,适合从学术研究到特定行业需求的多种应用。
大型多模态模型中视频理解的探索
Apollo是一个专注于视频理解的先进大型多模态模型家族。它通过系统性地探索视频-LMMs的设计空间,揭示了驱动性能的关键因素,提供了优化模型性能的实用见解。Apollo通过发现'Scaling Consistency',使得在较小模型和数据集上的设计决策能够可靠地转移到更大的模型上,大幅降低计算成本。Apollo的主要优点包括高效的设计决策、优化的训练计划和数据混合,以及一个新型的基准测试ApolloBench,用于高效评估。
Janus-Pro-7B 是一个新型的自回归框架,统一多模态理解和生成。
Janus-Pro-7B 是一个强大的多模态模型,能够同时处理文本和图像数据。它通过分离视觉编码路径,解决了传统模型在理解和生成任务中的冲突,提高了模型的灵活性和性能。该模型基于 DeepSeek-LLM 架构,使用 SigLIP-L 作为视觉编码器,支持 384x384 的图像输入,并在多模态任务中表现出色。其主要优点包括高效性、灵活性和强大的多模态处理能力。该模型适用于需要多模态交互的场景,例如图像生成和文本理解。
多模态视觉语言模型
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
一款多模态人工智能系统,可以根据文字、图片或视频剪辑生成新颖的视频。
Gen-2是一款多模态人工智能系统,可以根据文字、图片或视频剪辑生成新颖的视频。它可以通过将图像或文字提示的构图和风格应用于源视频的结构(Video to Video),或者仅使用文字(Text to Video)来实现。就像拍摄了全新的内容,而实际上并没有拍摄任何东西。Gen-2提供了多种模式,可以将任何图像、视频剪辑或文字提示转化为引人注目的影片作品。
Fugaku-LLM是一个专注于文本生成的人工智能模型。
Fugaku-LLM是一个由Fugaku-LLM团队开发的人工智能语言模型,专注于文本生成领域。它通过先进的机器学习技术,能够生成流畅、连贯的文本,适用于多种语言和场景。Fugaku-LLM的主要优点包括其高效的文本生成能力、对多种语言的支持以及持续的模型更新,以保持技术领先。该模型在社区中拥有广泛的应用,包括但不限于写作辅助、聊天机器人开发和教育工具。
端侧全模态理解模型,软硬协同释放无穹端侧智能
Infini-Megrez是一个由无问芯穹研发的端侧全模态理解模型,它基于Megrez-3B-Instruct扩展,具备图片、文本、音频三种模态数据的理解分析能力,并在图像理解、语言理解和语音理解三个方面均取得最优精度。该模型通过软硬协同优化,确保了各结构参数与主流硬件高度适配,推理速度领先同精度模型最大300%。它简单易用,采用最原始的LLaMA结构,开发者无需任何修改便可将模型部署于各种平台,最小化二次开发复杂度。此外,Infini-Megrez还提供了完整的WebSearch方案,使模型可以自动决策搜索调用时机,在搜索和对话中自动切换,并提供更好的总结效果。
一个集成视觉理解和生成的多模态生成模型。
Liquid 是一个自回归生成模型,通过将图像分解为离散代码并与文本标记共享特征空间,促进视觉理解和文本生成的无缝集成。此模型的主要优点在于无需外部预训练的视觉嵌入,减少了对资源的依赖,同时通过规模法则发现了理解与生成任务之间的相互促进效应。
由人工智能强力驱动,为职场人打造千人千面创意写作工作流
多墨智能写作是一款由人工智能强力驱动的创意写作工具,帮助职场人提高工作交付效率。它独家支持根据不同岗位通过算法一键生成工作文档,适合各种职业需求,包括产品经理、抖音运营专员、战略咨询专家、老师、医生、公职人员、旅游导游、公关等。多墨智能写作提供一键成文、辅助撰写、命令自定义和私有化部署等功能,可定制解决方案并保护内部数据隐私。
BAGEL是一款开源的统一多模态模型,您可以在任何地方进行微调、精简和部署。
BAGEL是一款可扩展的统一多模态模型,它正在革新AI与复杂系统的交互方式。该模型具有对话推理、图像生成、编辑、风格转移、导航、构图、思考等功能,通过深度学习视频和网络数据进行预训练,为生成高保真度、逼真图像提供了基础。
© 2025 AIbase 备案号:闽ICP备08105208号-14