需求人群:
["适用于需要进行多模态学习和处理的开发者和研究人员。","适合在资源受限的环境下部署高效的 AI 模型。","为中文和英文环境下的多模态任务提供支持。","适用于希望利用轻量级模型进行图像和语言任务的用户。"]
使用场景示例:
用于图像和文本的联合理解和生成任务。
在聊天机器人中结合图像理解提供更丰富的用户体验。
作为多模态数据处理的后端模型,支持各种智能应用。
产品特色:
提供多种视觉编码器选择,如 EVA-CLIP、SigLIP。
支持多种语言主干网络,包括 Llama-3-8B、Phi-1.5 等。
通过精选数据源构建更丰富的训练数据。
Bunny-v1.0-3B 模型在多语言环境下表现优异。
Bunny-Llama-3-8B-V 模型基于 Llama-3,展示出卓越的性能。
支持在 HuggingFace、ModelScope 和 wisemodel 平台上查找更多细节。
提供了针对中文问答能力的模型,如 Bunny-v1.0-3B-zh 和 Bunny-v1.0-2B-zh。
使用教程:
步骤1:访问 Bunny 的 GitHub 页面以获取更多信息。
步骤2:根据需要选择合适的模型版本进行下载。
步骤3:安装必要的依赖,如 torch 和 transformers。
步骤4:使用提供的代码片段或脚本进行模型的预处理和训练。
步骤5:通过 Gradio Web UI 或 CLI 进行模型的交互和推理。
步骤6:根据具体应用场景调整模型参数以获得最佳性能。
浏览量:62
最新流量情况
月访问量
4.92m
平均访问时长
00:06:33
每次访问页数
6.11
跳出率
36.20%
流量来源
直接访问
51.61%
自然搜索
33.46%
邮件
0.04%
外链引荐
12.58%
社交媒体
2.19%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
人工智能入门教程网站,提供全面的机器学习与深度学习知识。
该网站由作者从 2015 年开始学习机器学习和深度学习,整理并编写的一系列实战教程。涵盖监督学习、无监督学习、深度学习等多个领域,既有理论推导,又有代码实现,旨在帮助初学者全面掌握人工智能的基础知识和实践技能。网站拥有独立域名,内容持续更新,欢迎大家关注和学习。
提供AI和机器学习课程
Udacity人工智能学院提供包括深度学习、计算机视觉、自然语言处理和AI产品管理在内的AI培训和机器学习课程。这些课程旨在帮助学生掌握人工智能领域的最新技术,为未来的职业生涯打下坚实的基础。
轻量级但功能强大的多模态模型家族。
Bunny 是一系列轻量级但功能强大的多模态模型,提供多种即插即用的视图编码器和语言主干网络。通过从更广泛的数据源进行精选选择,构建更丰富的训练数据,以补偿模型尺寸的减小。Bunny-v1.0-3B 模型在性能上超越了同类大小甚至更大的 MLLMs(7B)模型,并与 13B 模型性能相当。
多模态长篇故事生成模型
SEED-Story是一个基于大型语言模型(MLLM)的多模态长篇故事生成模型,能够根据用户提供的图片和文本生成丰富、连贯的叙事文本和风格一致的图片。它代表了人工智能在创意写作和视觉艺术领域的前沿技术,具有生成高质量、多模态故事内容的能力,为创意产业提供了新的可能性。
提供关于人工智能的最佳资源,学习机器学习、数据科学、自然语言处理等。
AI Online Course是一个互动学习平台,提供清晰简明的人工智能介绍,使复杂的概念易于理解。它涵盖机器学习、深度学习、计算机视觉、自动驾驶、聊天机器人等方面的知识,并强调实际应用和技术优势。
提高大学生自学效率和质量的智能学习助手
夸克App推出的AI学习助手基于自研大模型,通过智能化的解题思路和讲解方式,提升大学生自学效率和质量。采用夸克宝宝的虚拟形象进行题目讲解,提供“考点分析”“详解步骤”“答案总结”等详细内容。并通过夸克网盘实现学习资料备份和使用,以及夸克扫描王提取核心复习内容。覆盖英语等学科的选择题、填空题、阅读题等常考题型,后续将加入数学等学科。
探索YouTube上最新的机器学习/人工智能课程
ML-YouTube-Courses是一个开源项目,致力于整理和索引YouTube上最新的、最好的机器学习课程。项目包含各种主题的课程,如机器学习、深度学习、自然语言处理、计算机视觉等,涵盖基础知识和前沿技术。该项目帮助开发者和学习者高效地发现优质的在线教程。
大型多模态模型中视频理解的探索
Apollo是一个专注于视频理解的先进大型多模态模型家族。它通过系统性地探索视频-LMMs的设计空间,揭示了驱动性能的关键因素,提供了优化模型性能的实用见解。Apollo通过发现'Scaling Consistency',使得在较小模型和数据集上的设计决策能够可靠地转移到更大的模型上,大幅降低计算成本。Apollo的主要优点包括高效的设计决策、优化的训练计划和数据混合,以及一个新型的基准测试ApolloBench,用于高效评估。
开源多模态大型语言模型系列
InternVL 2.5是基于InternVL 2.0的高级多模态大型语言模型系列,它在保持核心模型架构的同时,在训练和测试策略以及数据质量方面引入了显著的增强。该模型深入探讨了模型扩展与性能之间的关系,系统地探索了视觉编码器、语言模型、数据集大小和测试时配置的性能趋势。通过在包括多学科推理、文档理解、多图像/视频理解、现实世界理解、多模态幻觉检测、视觉定位、多语言能力和纯语言处理在内的广泛基准测试中进行的广泛评估,InternVL 2.5展现出了与GPT-4o和Claude-3.5-Sonnet等领先商业模型相媲美的竞争力。特别是,该模型是第一个在MMMU基准测试中超过70%的开源MLLM,通过链式思考(CoT)推理实现了3.7个百分点的提升,并展示了测试时扩展的强大潜力。
机器学习研究与产品实验室,构建有用的通用人工智能
Adept是一个机器学习研究与产品实验室,通过使人类和计算机能够创造性地共同工作,构建通用人工智能。它将你的目标用简单的语言转化为日常使用的软件上的操作。
推动人工智能安全治理,促进技术健康发展
《人工智能安全治理框架》1.0版是由全国网络安全标准化技术委员会发布的技术指南,旨在鼓励人工智能创新发展的同时,有效防范和化解人工智能安全风险。该框架提出了包容审慎、确保安全,风险导向、敏捷治理,技管结合、协同应对,开放合作、共治共享等原则。它结合人工智能技术特性,分析风险来源和表现形式,针对模型算法安全、数据安全和系统安全等内生安全风险,以及网络域、现实域、认知域、伦理域等应用安全风险,提出了相应的技术应对和综合防治措施。
现代Python数据框库,专为人工智能设计。
DataChain是一个现代的Python数据框库,专为人工智能设计。它旨在将非结构化数据组织成数据集,并在本地机器上大规模处理数据。DataChain不抽象或隐藏AI模型和API调用,而是帮助将它们集成到后现代数据堆栈中。该产品以其高效性、易用性和强大的数据处理能力为主要优点,支持多种数据存储和处理方式,包括图像、视频、文本等多种数据类型,并且能够与PyTorch和TensorFlow等深度学习框架无缝对接。DataChain是开源的,遵循Apache-2.0许可协议,免费供用户使用。
真实对话的人工智能语言学习助手
Lingostar是一款可以用英语、西班牙语或法语与之对话的人工智能语言学习助手。通过与Lingostar进行真实对话,提高发音、词汇和理解能力,达到流利的口语表达。无需导师,随时随地与Lingostar聊天,它会根据你的错误构建个性化学习计划。免费试用。
辅助老年学习科技的人工智能助手
Apo AI是一个帮助老年人学习当今科技的人工智能助手。它提供个性化的学习内容和指导,帮助老年人掌握各种科技技能。Apo AI的功能包括解答问题、提供教程、定制学习计划等。它能够帮助老年人更好地适应当今的数字化社会。
实时更新的多模态模型性能排行榜
OpenCompass多模态排行榜是一个实时更新的平台,用于评估和排名不同的多模态模型(VLMs)。它通过8个多模态基准测试来计算模型的平均得分,并提供详细的性能数据。该平台仅包含开源的VLMs或公开可用的APIs,旨在帮助研究人员和开发者了解当前多模态模型的最新进展和性能表现。
多模态知识图谱补全工具
MyGO是一个用于多模态知识图谱补全的工具,它通过将离散模态信息作为细粒度的标记来处理,以提高补全的准确性。MyGO利用transformers库对文本标记进行嵌入,进而在多模态数据集上进行训练和评估。它支持自定义数据集,并且提供了训练脚本以复现实验结果。
与您的个人人工智能导师互动学习
Q-Chat是Quizlet提供的个性化人工智能导师服务。它采用苏格拉底式方法,通过互动对话来促进学习者的批判性思维,加深对所学知识的理解和运用。Q-Chat可以根据学习者的需求,提供定制化的练习和挑战,以巩固所学内容。同时,它的对话式学习体验也让学习过程变得更加生动有趣。Quizlet声称,Q-Chat已经指导了全球各地的学习者,对话次数超过300万次。Q-Chat主要面向学生和需要学习新知识的用户群体。
情商智商俱佳的多模态大模型
西湖大模型是心辰智能云推出的一款具有高情商和智商的多模态大模型,它能够处理包括文本、图像、声音等多种数据类型,为用户提供智能对话、写作、绘画、语音等AI服务。该模型通过先进的人工智能算法,能够理解和生成自然语言,适用于多种场景,如心理咨询、内容创作、客户服务等,具有高度的定制性和灵活性。西湖大模型的推出,标志着心辰智能云在AI领域的技术实力和创新能力,为用户提供了更加丰富和高效的智能服务体验。
GradesAI是一个人工智能驱动的学习工具
GradesAI 是一款人工智能驱动的学习工具,可以生成预测性模拟考试,帮助学生准备真实考试。它还提供各种互动和吸引人的学习工具,如测验、闪存卡、摘要、数学辅导等。主要功能包括 PEG 算法生成预测性练习考试、用户友好的仪表板跟踪进度、智能闪存卡帮助记忆要点、数学向导解释复杂方程、实时消息支持等。适合各年级学生使用,提高学习效率,取得更好成绩。
一万亿Token和34亿张图像的多模态数据集
MINT-1T是由Salesforce AI开源的多模态数据集,包含一万亿个文本标记和34亿张图像,规模是现有开源数据集的10倍。它不仅包含HTML文档,还包括PDF文档和ArXiv论文,丰富了数据集的多样性。MINT-1T的数据集构建涉及多种来源的数据收集、处理和过滤步骤,确保了数据的高质量和多样性。
京东自主研发的人工智能开放平台
京东人工智能开放平台NeuHub,汇聚京东自主研发的人工智能核心技术,包含语音、图像、视频、NLP等技术,通过平台向外开放,助力行业智能升级。平台还提供数据标注、模型开发、训练和发布等全流程服务,以及创新应用案例,帮助企业实现智能化转型。
统一多模态理解和生成的单一变换器
Show-o是一个用于多模态理解和生成的单一变换器模型,它能够处理图像字幕、视觉问答、文本到图像生成、文本引导的修复和扩展以及混合模态生成。该模型由新加坡国立大学的Show Lab和字节跳动共同开发,采用最新的深度学习技术,能够理解和生成多种模态的数据,是人工智能领域的一大突破。
现代人工智能系统学习指南。
GenAI Handbook 是一个旨在为学习现代人工智能系统的关键概念提供指导的手册。它由 William Brown 编写,目的是整理互联网上分散的高质量解释资源,形成一个教科书风格的呈现,作为达到个人与人工智能相关的学习目标的路线图。该手册面向具有技术背景的人群,无论是出于好奇还是潜在的职业发展,都可以通过它来了解人工智能的最新创新。
为人工智能提供多模态数据支持的高效数据库解决方案。
Activeloop Deep Lake是一个专为人工智能设计的数据库,支持多模态数据(如文本、图像、视频等)的高效存储和检索。它通过优化数据处理流程,帮助企业和开发者快速构建和部署AI应用,显著提升数据准备和模型训练的效率。Deep Lake的技术优势在于其高性能、可扩展性和易用性,使其成为AI开发中的重要基础设施。产品主要面向企业级用户和AI开发者,提供灵活的定价方案以满足不同规模用户的需求。
先进的机器学习模型,助力非商业研究。
Meta Chameleon是由Meta公司开发的一款机器学习模型,它为非商业研究用途提供支持,包括研究、开发、教育、处理或分析等,并不以商业利益或对您或他人的货币补偿为主要目的。模型包括机器学习模型代码、训练好的模型权重、推理启用代码、训练启用代码、微调启用代码、演示材料等。
JaxMARL - 多智能体强化学习库
JaxMARL 是一个多智能体强化学习库,结合了易用性和 GPU 加速效能。它支持常用的多智能体强化学习环境以及流行的基准算法。目标是提供一个全面评估多智能体强化学习方法的库,并与相关基准进行比较。同时,它还引入了 SMAX,这是一个简化版的流行的星际争霸多智能体挑战环境,无需运行星际争霸 II 游戏引擎。
多模态大型语言模型,提升文本、图像和视频数据处理能力。
Valley是由字节跳动开发的多模态大型模型(MLLM),旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,远超过其他开源模型,并在OpenCompass多模态模型评估排行榜上展现了出色的性能,平均得分67.40,位列已知开源MLLMs(<10B)中的前两名。
无需编程,一站式机器学习平台
Xero.AI是一个一站式的机器学习平台,无需编程,让任何人都能够利用人工智能的力量。它提供了端到端的无代码机器学习解决方案,包括数据探索、数据转换、机器学习模型训练/测试等功能。Xero.AI由Xeros ARtificial Analyst(XARA)驱动,它是一个AI驱动的机器学习工程师,可以处理所有的数据科学和机器学习需求。定价方案请访问官方网站了解更多信息。
© 2025 AIbase 备案号:闽ICP备08105208号-14