需求人群:
["适用于需要进行多模态学习和处理的开发者和研究人员。","适合在资源受限的环境下部署高效的 AI 模型。","为中文和英文环境下的多模态任务提供支持。","适用于希望利用轻量级模型进行图像和语言任务的用户。"]
使用场景示例:
用于图像和文本的联合理解和生成任务。
在聊天机器人中结合图像理解提供更丰富的用户体验。
作为多模态数据处理的后端模型,支持各种智能应用。
产品特色:
提供多种视觉编码器选择,如 EVA-CLIP、SigLIP。
支持多种语言主干网络,包括 Llama-3-8B、Phi-1.5 等。
通过精选数据源构建更丰富的训练数据。
Bunny-v1.0-3B 模型在多语言环境下表现优异。
Bunny-Llama-3-8B-V 模型基于 Llama-3,展示出卓越的性能。
支持在 HuggingFace、ModelScope 和 wisemodel 平台上查找更多细节。
提供了针对中文问答能力的模型,如 Bunny-v1.0-3B-zh 和 Bunny-v1.0-2B-zh。
使用教程:
步骤1:访问 Bunny 的 GitHub 页面以获取更多信息。
步骤2:根据需要选择合适的模型版本进行下载。
步骤3:安装必要的依赖,如 torch 和 transformers。
步骤4:使用提供的代码片段或脚本进行模型的预处理和训练。
步骤5:通过 Gradio Web UI 或 CLI 进行模型的交互和推理。
步骤6:根据具体应用场景调整模型参数以获得最佳性能。
浏览量:36
最新流量情况
月访问量
4.91m
平均访问时长
00:06:18
每次访问页数
5.57
跳出率
37.92%
流量来源
直接访问
51.73%
自然搜索
32.88%
邮件
0.04%
外链引荐
13.01%
社交媒体
2.27%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.81%
德国
3.69%
印度
9.16%
俄罗斯
4.47%
美国
18.04%
轻量级但功能强大的多模态模型家族。
Bunny 是一系列轻量级但功能强大的多模态模型,提供多种即插即用的视图编码器和语言主干网络。通过从更广泛的数据源进行精选选择,构建更丰富的训练数据,以补偿模型尺寸的减小。Bunny-v1.0-3B 模型在性能上超越了同类大小甚至更大的 MLLMs(7B)模型,并与 13B 模型性能相当。
快速因果视频生成器,实现即时视频生成。
CausVid是一个先进的视频生成模型,它通过将预训练的双向扩散变换器适配为因果变换器,实现了即时视频帧的生成。这一技术的重要性在于它能够显著减少视频生成的延迟,使得视频生成能够以交互式帧率(9.4FPS)在单个GPU上进行流式生成。CausVid模型支持从文本到视频的生成,以及零样本图像到视频的生成,展现了视频生成技术的新高度。
提供AI和机器学习课程
Udacity人工智能学院提供包括深度学习、计算机视觉、自然语言处理和AI产品管理在内的AI培训和机器学习课程。这些课程旨在帮助学生掌握人工智能领域的最新技术,为未来的职业生涯打下坚实的基础。
高性能AI加速器,专为AI工作负载设计。
Intel® Gaudi® 3 AI Accelerator是英特尔推出的一款高性能人工智能加速器,它基于高效的英特尔® Gaudi® 平台构建,具备出色的MLPerf基准性能,旨在处理要求苛刻的训练和推理任务。该加速器支持数据中心或云中的大型语言模型、多模态模型和企业RAG等人工智能应用程序,能够在您可能已经拥有的以太网基础设施上运行。无论您需要单个加速器还是数千个加速器,英特尔Gaudi 3都可以在您的AI成功中发挥关键作用。
谷歌旗下领先的人工智能研究公司
Google DeepMind 是谷歌旗下的一家领先的人工智能公司,专注于开发先进的机器学习算法和系统。DeepMind 以其在深度学习和强化学习领域的开创性工作而闻名,其研究涵盖了从游戏到医疗保健等多个领域。DeepMind 的目标是通过构建智能系统来解决复杂的问题,推动科学和医学的进步。
深度学习领域的经典教材中文翻译
《深度学习》是一本由Simon J.D. Prince所著的深度学习领域的经典教材,MIT Press于2023年12月5日出版。本书涵盖了深度学习领域的许多关键概念,适合初学者和有经验的开发者阅读。本仓库提供了该书的中文翻译,翻译基于原书的最新版本,使用ChatGPT进行机翻并进行人工审核,确保翻译的准确性。
提供关于人工智能的最佳资源,学习机器学习、数据科学、自然语言处理等。
AI Online Course是一个互动学习平台,提供清晰简明的人工智能介绍,使复杂的概念易于理解。它涵盖机器学习、深度学习、计算机视觉、自动驾驶、聊天机器人等方面的知识,并强调实际应用和技术优势。
一款由XTuner优化的LLaVA模型,结合了图像和文本处理能力。
llava-llama-3-8b-v1_1是一个由XTuner优化的LLaVA模型,它基于meta-llama/Meta-Llama-3-8B-Instruct和CLIP-ViT-Large-patch14-336,并通过ShareGPT4V-PT和InternVL-SFT进行了微调。该模型专为图像和文本的结合处理而设计,具有强大的多模态学习能力,适用于各种下游部署和评估工具包。
人工智能入门教程网站,提供全面的机器学习与深度学习知识。
该网站由作者从 2015 年开始学习机器学习和深度学习,整理并编写的一系列实战教程。涵盖监督学习、无监督学习、深度学习等多个领域,既有理论推导,又有代码实现,旨在帮助初学者全面掌握人工智能的基础知识和实践技能。网站拥有独立域名,内容持续更新,欢迎大家关注和学习。
实时一步潜在扩散模型,可用图像条件控制生成
SDXS是一种新的扩散模型,通过模型微型化和减少采样步骤,大幅降低了模型延迟。它利用知识蒸馏来简化U-Net和图像解码器架构,并引入了一种创新的单步DM训练技术,使用特征匹配和分数蒸馆。SDXS-512和SDXS-1024模型可在单个GPU上分别实现约100 FPS和30 FPS的推理速度,比之前模型快30至60倍。此外,该训练方法在图像条件控制方面也有潜在应用,可实现高效的图像到图像翻译。
Rayscape | 放射学人工智能
Rayscape是一款先进的放射学人工智能解决方案,通过使用前沿的深度学习技术,提高X射线和CT的准确性和效率。我们为肺癌筛查、诊断成像和肿瘤学提供AI辅助诊断。
打造人工智能未来
Anthropic是一款人工智能平台,通过深度学习和自然语言处理等技术,提供先进的人工智能解决方案。我们的产品具有强大的功能和优势,可应用于图像识别、自然语言处理、机器学习等领域。定价灵活合理,定位为帮助用户实现人工智能应用的目标。无论您是开发者、研究人员还是企业,Anthropic都能满足您的需求。
让您的AI助手像人类一样交流
Quickchat AI是一款帮助公司构建自己的多语言AI助手的技术。借助我们的无代码平台和强大的集成功能,公司可以构建会话式AI界面,并将其连接到任何网站、产品、应用、游戏或智能设备。Quickchat AI由生成式AI模型(如GPT-3)驱动,可以实现多语言的自然对话,并提供自动化客户支持、线索生成等功能。
在线学习Python、AI、大模型、AI写作绘画课程,零基础轻松入门。
Mo是一个专注于 AI 技术学习和应用的平台,旨在为用户提供从基础到高级的系统学习资源,帮助各类学习者掌握 AI 技能,并将其应用于实际项目中。无论你是大学生、职场新人,还是想提升自己技能的行业专家,Mo都能为你提供量身定制的课程、实战项目和工具,带你深入理解和应用人工智能。
OmniThink 是一种通过模拟人类思考过程来提升机器写作知识密度的框架。
OmniThink 是一种创新的机器写作框架,旨在通过模拟人类的迭代扩展和反思过程,提升生成文章的知识密度。它通过知识密度指标衡量内容的独特性和深度,并通过信息树和概念池的结构化方式组织知识,从而生成高质量的长文本。该技术的核心优势在于能够有效减少冗余信息,提升内容的深度和新颖性,适用于需要高质量长文本生成的场景。
Seaweed-APT是一种支持实时单步生成1280x720 24fps视频的模型。
Seaweed-APT是一种用于视频生成的模型,通过对抗性后训练技术,实现了大规模文本到视频的单步生成。该模型能够在短时间内生成高质量的视频,具有重要的技术意义和应用价值。其主要优点是速度快、生成效果好,适用于需要快速生成视频的场景。目前尚未明确具体的价格和市场定位。
MangaNinja 是一种基于参考的线稿上色方法,可实现精确匹配和细粒度交互控制。
MangaNinja 是一种参考引导的线稿上色方法,它通过独特的设计确保精确的人物细节转录,包括用于促进参考彩色图像和目标线稿之间对应学习的块洗牌模块,以及用于实现细粒度颜色匹配的点驱动控制方案。该模型在自收集的基准测试中表现出色,超越了当前解决方案的精确上色能力。此外,其交互式点控制在处理复杂情况(如极端姿势和阴影)、跨角色上色、多参考协调等方面展现出巨大潜力,这些是现有算法难以实现的。MangaNinja 由来自香港大学、香港科技大学、通义实验室和蚂蚁集团的研究人员共同开发,相关论文已发表在 arXiv 上,代码也已开源。
强大的语言模型,拥有4560亿总参数,可处理长达400万token的上下文。
MiniMax-01是一个具有4560亿总参数的强大语言模型,其中每个token激活459亿参数。它采用混合架构,结合了闪电注意力、softmax注意力和专家混合(MoE),通过先进的并行策略和创新的计算-通信重叠方法,如线性注意力序列并行主义加(LASP+)、varlen环形注意力、专家张量并行(ETP)等,将训练上下文长度扩展到100万tokens,在推理时可处理长达400万tokens的上下文。在多个学术基准测试中,MiniMax-01展现了顶级模型的性能。
展示小型语言模型通过自我演化深度思考掌握数学推理能力的研究成果。
rStar-Math是一项研究,旨在证明小型语言模型(SLMs)能够在不依赖于更高级模型的情况下,与OpenAI的o1模型相媲美甚至超越其数学推理能力。该研究通过蒙特卡洛树搜索(MCTS)实现“深度思考”,其中数学策略SLM在基于SLM的流程奖励模型的指导下进行测试时搜索。rStar-Math引入了三种创新方法来应对训练两个SLM的挑战,通过4轮自我演化和数百万个合成解决方案,将SLMs的数学推理能力提升到最先进水平。该模型在MATH基准测试中显著提高了性能,并在AIME竞赛中表现优异。
SVFR是一个用于视频人脸修复的统一框架。
SVFR(Stable Video Face Restoration)是一个用于广义视频人脸修复的统一框架。它整合了视频人脸修复(BFR)、着色和修复任务,通过利用Stable Video Diffusion(SVD)的生成和运动先验,并结合统一的人脸修复框架中的任务特定信息,有效结合了这些任务的互补优势,增强了时间连贯性并实现了卓越的修复质量。该框架引入了可学习的任务嵌入以增强任务识别,并采用新颖的统一潜在正则化(ULR)来鼓励不同子任务之间的共享特征表示学习。此外,还引入了面部先验学习和自引用细化作为辅助策略,以进一步提高修复质量和时间稳定性。SVFR在视频人脸修复领域取得了最先进的成果,并为广义视频人脸修复建立了新的范式。
由Google Research开发的预训练时间序列预测模型。
TimesFM是一个由Google Research开发的预训练时间序列预测模型,用于时间序列预测任务。该模型在多个数据集上进行了预训练,能够处理不同频率和长度的时间序列数据。其主要优点包括高性能、可扩展性强以及易于使用。该模型适用于需要准确预测时间序列数据的各种应用场景,如金融、气象、能源等领域。该模型在Hugging Face平台上免费提供,用户可以方便地下载和使用。
Sonus-1:开启大型语言模型(LLMs)的新时代
Sonus-1是Sonus AI推出的一系列大型语言模型(LLMs),旨在推动人工智能的边界。这些模型以其高性能和多应用场景的多功能性而设计,包括Sonus-1 Mini、Sonus-1 Air、Sonus-1 Pro和Sonus-1 Pro (w/ Reasoning)等不同版本,以满足不同需求。Sonus-1 Pro (w/ Reasoning)在多个基准测试中表现突出,特别是在推理和数学问题上,展现了其超越其他专有模型的能力。Sonus AI致力于开发高性能、可负担、可靠且注重隐私的大型语言模型。
70B参数的文本生成模型
Llama-3.1-70B-Instruct-AWQ-INT4是一个由Hugging Face托管的大型语言模型,专注于文本生成任务。该模型拥有70B个参数,能够理解和生成自然语言文本,适用于多种文本相关的应用场景,如内容创作、自动回复等。它基于深度学习技术,通过大量的数据训练,能够捕捉语言的复杂性和多样性。模型的主要优点包括高参数量带来的强大表达能力,以及针对特定任务的优化,使其在文本生成领域具有较高的效率和准确性。
多模态大型语言模型,优化图像与文本交互能力
InternVL2_5-4B-MPO-AWQ是一个多模态大型语言模型(MLLM),专注于提升模型在图像和文本交互任务中的表现。该模型基于InternVL2.5系列,并通过混合偏好优化(MPO)进一步提升性能。它能够处理包括单图像和多图像、视频数据在内的多种输入,适用于需要图像和文本交互理解的复杂任务。InternVL2_5-4B-MPO-AWQ以其卓越的多模态能力,为图像-文本到文本的任务提供了一个强大的解决方案。
微软开源的视频分词器家族
VidTok是微软开源的一系列先进的视频分词器,它在连续和离散分词方面表现出色。VidTok在架构效率、量化技术和训练策略上都有显著的创新,提供了高效的视频处理能力,并且在多个视频质量评估指标上超越了以往的模型。VidTok的开发旨在推动视频处理和压缩技术的发展,对于视频内容的高效传输和存储具有重要意义。
多模态大型语言模型,提升文本、图像和视频数据处理能力。
Valley是由字节跳动开发的多模态大型模型(MLLM),旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,远超过其他开源模型,并在OpenCompass多模态模型评估排行榜上展现了出色的性能,平均得分67.40,位列已知开源MLLMs(<10B)中的前两名。
商业领域基础模型与代理
shoonya是一个专注于现代商业领域的基础模型与代理,提供多语言支持、本地化服务和针对特定商业垂直领域的优化。它通过为电子商务用例特别调整的基础模型,支持多种语言和本地上下文,以推动下一代零售业务的发展。shoonya的技术背景是基于人工智能和机器学习,旨在理解和优化区域商业模式、术语和偏好,为用户提供更加个性化和高效的购物体验。
开源图像到视频生成模型
Ruyi-Mini-7B是由CreateAI团队开发的开源图像到视频生成模型,具有约71亿参数,能够从输入图像生成360p到720p分辨率的视频帧,最长5秒。模型支持不同宽高比,并增强了运动和相机控制功能,提供更大的灵活性和创造力。该模型在Apache 2.0许可下发布,意味着用户可以自由使用和修改。
© 2025 AIbase 备案号:闽ICP备08105208号-14