需求人群:
"该排行榜适合人工智能领域的研究人员、开发者和企业决策者,因为它提供了一个透明和公正的平台来评估和比较不同多模态模型的性能。这有助于他们选择最适合自己项目需求的模型,或者了解行业趋势和发展方向。"
使用场景示例:
研究人员使用排行榜来比较不同模型在特定任务上的表现
开发者利用排行榜数据来选择适合其应用场景的模型
企业决策者参考排行榜来制定技术采购或研发策略
产品特色:
提供多模态模型的实时排名和性能数据
支持通过创建PR在VLMEvalKit中添加新模型
包含8个多模态基准测试的性能评估
提供详细的模型性能报告,包括各项基准测试的得分
允许用户通过联系邮箱opencompass@pjlab.org.cn获取帮助和支持
使用教程:
访问OpenCompass多模态排行榜网站
查看当前的多模态模型排名和性能数据
通过点击感兴趣的模型,获取更详细的性能报告
如果需要添加新模型,可以访问VLMEvalKit并创建PR
通过排行榜提供的联系方式获取进一步的帮助和支持
浏览量:952
最新流量情况
月访问量
20.64k
平均访问时长
00:01:47
每次访问页数
2.81
跳出率
40.44%
流量来源
直接访问
50.81%
自然搜索
20.56%
邮件
0.02%
外链引荐
27.58%
社交媒体
0.89%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
71.80%
新加坡
3.33%
美国
5.58%
实时更新的多模态模型性能排行榜
OpenCompass多模态排行榜是一个实时更新的平台,用于评估和排名不同的多模态模型(VLMs)。它通过8个多模态基准测试来计算模型的平均得分,并提供详细的性能数据。该平台仅包含开源的VLMs或公开可用的APIs,旨在帮助研究人员和开发者了解当前多模态模型的最新进展和性能表现。
大型语言模型排行榜,实时评估模型性能。
OpenCompass 2.0是一个专注于大型语言模型性能评估的平台。它使用多个闭源数据集进行多维度评估,为模型提供整体平均分和专业技能分数。该平台通过实时更新排行榜,帮助开发者和研究人员了解不同模型在语言、知识、推理、数学和编程等方面的性能表现。
AI 排行榜
AIGCRank.cn 是一个提供 AI 产品排行榜的网站,主要收集和整理国内外各类 AI 产品的相关信息,并通过排行榜形式展示给用户。该网站旨在帮助用户了解和选择最优秀的 AI 产品,以满足其需求。
AI音乐排行榜,探索最新的人工智能生成音乐
AI Hits是一个AI音乐排行榜,通过人工智能生成的音乐。用户可以在AI Hits上发现最新的AI生成音乐的Top 100和新歌曲。AI Hits使用人工智能算法生成音乐,并根据用户的播放次数和喜好进行排名。AI Hits提供了一个全新的音乐体验,让用户感受到人工智能在音乐创作中的无限可能。
首个全面评估多模态大型语言模型在视频分析中的性能基准。
Video-MME是一个专注于多模态大型语言模型(MLLMs)在视频分析领域性能评估的基准测试。它填补了现有评估方法中对MLLMs处理连续视觉数据能力的空白,为研究者提供了一个高质量和全面的评估平台。该基准测试覆盖了不同长度的视频,并针对MLLMs的核心能力进行了评估。
评估大型语言模型调用函数能力的排行榜
Berkeley Function-Calling Leaderboard(伯克利函数调用排行榜)是一个专门用来评估大型语言模型(LLMs)准确调用函数(或工具)能力的在线平台。该排行榜基于真实世界数据,定期更新,提供了一个衡量和比较不同模型在特定编程任务上表现的基准。它对于开发者、研究人员以及对AI编程能力有兴趣的用户来说是一个宝贵的资源。
领先的AI评测基准,衡量和比较AI模型性能。
SuperCLUE是一个用于评估和比较大型语言模型性能的在线平台。它提供了多种任务和排行榜,旨在为AI研究者和开发者提供一个标准化的测试环境。SuperCLUE支持各种AI应用场景,包括数学推理、代码生成、超长文本处理等,能够帮助用户准确评估模型在不同任务上的表现和能力。
开放的大型语言模型排行榜
Open LLM Leaderboard是一个由Hugging Face提供的空间,旨在展示和比较各种大型语言模型的性能。它为开发者、研究人员和企业提供了一个平台,可以查看不同模型在特定任务上的表现,从而帮助用户选择最适合自己需求的模型。
发现2024年最佳AI工具
AI Top Rank是一个专注于AI工具发现和推广的平台,旨在帮助用户发现和使用最新的AI工具,促进AI技术的普及和应用。平台提供每周更新的AI工具排行榜,用户可以投票支持自己喜爱的工具,也可以提交自己的AI工具进行推广。
高性能多模态AI模型
Gemini Pro是DeepMind推出的一款高性能多模态AI模型,专为广泛的任务设计,具有高达两百万token的长上下文窗口,能够处理大规模文档、代码、音频和视频等。它在多个基准测试中表现出色,包括代码生成、数学问题解决和多语言翻译等。
利用Text-to-Space创建交互式虚拟体验
Versy.ai | Text-to-Space是一个通过文本提示创建交互式虚拟体验的工具。它不仅可以构建3D体验,还可以让生成式人工智能构建逃脱房间、排行榜、产品配置体验等。让您超越3D,进入元宇宙的时代。
Humanity's Last Exam 是一个用于衡量大型语言模型能力的多模态基准测试。
Humanity's Last Exam 是一个由全球专家合作开发的多模态基准测试,旨在衡量大型语言模型在学术领域的表现。它包含来自 50 个国家超过 500 个机构的近 1000 名专家贡献的 3000 个问题,覆盖超过 100 个学科。该测试旨在成为最终的封闭式学术基准,通过挑战模型的极限来推动人工智能技术的发展。其主要优点是难度高,能够有效评估模型在复杂学术问题上的表现。
一个用于比较大型语言模型在总结短文档时产生幻觉的排行榜。
该产品是一个由Vectara开发的开源项目,用于评估大型语言模型(LLM)在总结短文档时的幻觉产生率。它使用了Vectara的Hughes幻觉评估模型(HHEM-2.1),通过检测模型输出中的幻觉来计算排名。该工具对于研究和开发更可靠的LLM具有重要意义,能够帮助开发者了解和改进模型的准确性。
AI模型性能评估平台
Scale Leaderboard是一个专注于AI模型性能评估的平台,提供专家驱动的私有评估数据集,确保评估结果的公正性和无污染。该平台定期更新排行榜,包括新的数据集和模型,营造动态竞争环境。评估由经过严格审查的专家使用特定领域的方法进行,保证评估的高质量和可信度。
数字多模态测谎仪,实时风险评估与情感分析。
PolygrAI是一款先进的数字多模态测谎仪,结合了心理学原理和先进的人工智能及计算机视觉技术,通过分析视觉、音频和语言线索,实时识别可能表明压力或欺骗的行为波动。该技术不仅提高了欺骗检测的准确性,还为用户在各种应用场景中做出决策提供了有价值的见解。PolygrAI的背景信息包括多项研究支持,如Barathi (2016)和Ding et al., (2019)的研究,显示多模态方法在欺骗检测中的有效性。产品不收集用户数据,注重隐私保护,并且正在开发移动版本。
AI多模态数据绑定
ImageBind是一种新的AI模型,能够同时绑定六种感官模态的数据,无需显式监督。通过识别这些模态之间的关系(图像和视频、音频、文本、深度、热成像和惯性测量单元(IMUs)),这一突破有助于推动AI发展,使机器能够更好地分析多种不同形式的信息。探索演示以了解ImageBind在图像、音频和文本模态上的能力。
多模态语言模型
SpeechGPT是一种多模态语言模型,具有内在的跨模态对话能力。它能够感知并生成多模态内容,遵循多模态人类指令。SpeechGPT-Gen是一种扩展了信息链的语音生成模型。SpeechAgents是一种具有多模态多代理系统的人类沟通模拟。SpeechTokenizer是一种统一的语音标记器,适用于语音语言模型。这些模型和数据集的发布日期和相关信息均可在官方网站上找到。
多模态大型语言模型,展示卓越的整体性能
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,基于InternVL2.5和混合偏好优化构建。该模型集成了新增量预训练的InternViT和各种预训练的大型语言模型,如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。它支持多图像和视频数据,并且在多模态任务中表现出色,能够理解和生成与图像相关的文本内容。
多模态语言模型预测网络
Honeybee是一个适用于多模态语言模型的局部性增强预测器。它能够提高多模态语言模型在不同下游任务上的性能,如自然语言推理、视觉问答等。Honeybee的优势在于引入了局部性感知机制,可以更好地建模输入样本之间的依赖关系,从而增强多模态语言模型的推理和问答能力。
高性能多模态语言模型,适用于图像和视频理解。
MiniCPM-V 2.6是一个基于8亿参数的多模态大型语言模型,它在单图像理解、多图像理解和视频理解等多个领域展现出领先性能。该模型在OpenCompass等多个流行基准测试中取得了平均65.2分的高分,超越了广泛使用的专有模型。它还具备强大的OCR能力,支持多语言,并在效率上表现出色,能够在iPad等终端设备上实现实时视频理解。
多模态多视角视频数据集和基准挑战
Ego-Exo4D 是一个多模态多视角视频数据集和基准挑战,以捕捉技能人类活动的自我中心和外部中心视频为中心。它支持日常生活活动的多模态机器感知研究。该数据集由 839 位佩戴摄像头的志愿者在全球 13 个城市收集,捕捉了 1422 小时的技能人类活动视频。该数据集提供了专家评论、参与者提供的教程样式的叙述和一句话的原子动作描述等三种自然语言数据集,配对视频使用。Ego-Exo4D 还捕获了多视角和多种感知模态,包括多个视角、七个麦克风阵列、两个 IMUs、一个气压计和一个磁强计。数据集记录时严格遵守隐私和伦理政策,参与者的正式同意。欲了解更多信息,请访问官方网站。
大型语言模型 (LLM) 性能评测的众包开放平台
LMSys 聊天机器人竞技场排行榜是一个用于评估大型语言模型 (LLM) 性能的众包开放平台。它利用 Elo 排名系统对 LLM 进行排名,排名依据是超过 30 万用户投票的结果。用户可以在网站上与不同的 LLM 进行互动,并根据其对话质量进行投票。该排行榜可用于追踪不同 LLM 的发展趋势,并为研究人员和开发者提供基准测试工具。
视觉定位GUI指令的多模态模型
Aria-UI是一个专为GUI指令视觉定位而设计的大规模多模态模型。它采用纯视觉方法,不依赖辅助输入,能够适应多样化的规划指令,并通过合成多样化、高质量的指令样本来适应不同的任务。Aria-UI在离线和在线代理基准测试中均创下新的最高记录,超越了仅依赖视觉和依赖AXTree的基线。
多模态大型语言模型,展示卓越的整体性能。
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,它基于InternVL2.5和混合偏好优化构建。该模型整合了新增量预训练的InternViT与各种预训练的大型语言模型,包括InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL2.5-MPO在新版本中保留了与InternVL 2.5及其前身相同的模型架构,遵循“ViT-MLP-LLM”范式。该模型支持多图像和视频数据,通过混合偏好优化(MPO)进一步提升模型性能,使其在多模态任务中表现更优。
多模态图像生成模型
Instruct-Imagen是一个多模态图像生成模型,通过引入多模态指令,实现对异构图像生成任务的处理,并在未知任务中实现泛化。该模型利用自然语言整合不同的模态(如文本、边缘、风格、主题等),标准化丰富的生成意图。通过在预训练文本到图像扩散模型上进行两阶段框架的微调,采用检索增强训练和多样的图像生成任务微调,使得该模型在各种图像生成数据集上的人工评估结果表明,其在领域内与先前的任务特定模型相匹配或超越,并展现出对未知和更复杂任务的有希望的泛化能力。
© 2025 AIbase 备案号:闽ICP备08105208号-14