需求人群:
"目标受众为开发者、研究人员和企业用户,他们需要评估和选择适合特定任务的大型语言模型。此平台提供了一个直观的比较工具,帮助他们做出更明智的决策。"
使用场景示例:
研究人员使用Open LLM Leaderboard比较不同模型在自然语言处理任务上的表现。
企业用户通过该平台选择适合其产品的聊天机器人模型。
开发者利用排行榜数据优化自己的语言模型,以获得更好的排名和认可。
产品特色:
展示不同大型语言模型的性能比较
提供模型在特定任务上的表现数据
帮助用户选择最适合自己需求的模型
支持开发者和研究人员进行模型评估
促进模型性能的持续改进和优化
使用教程:
访问Open LLM Leaderboard网站。
浏览不同模型的性能数据和排名。
选择感兴趣的模型,查看其在特定任务上的表现。
根据需求筛选模型,比如特定语言支持或特定性能指标。
使用排行榜提供的信息来选择或优化自己的语言模型。
浏览量:98
最新流量情况
月访问量
25296.55k
平均访问时长
00:04:45
每次访问页数
5.83
跳出率
43.31%
流量来源
直接访问
48.39%
自然搜索
35.85%
邮件
0.03%
外链引荐
12.76%
社交媒体
2.96%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
开放的大型语言模型排行榜
Open LLM Leaderboard是一个由Hugging Face提供的空间,旨在展示和比较各种大型语言模型的性能。它为开发者、研究人员和企业提供了一个平台,可以查看不同模型在特定任务上的表现,从而帮助用户选择最适合自己需求的模型。
深入分析TTFT、TPS等关键指标
该网站提供了国内常见模型提供商API服务的性能指标,包括TTFT(首token时延)、TPS(每秒输出token数)、总耗时、上下文长度以及输入输出价格等详细数据。它为开发者和企业提供了评估不同大模型性能的依据,帮助他们选择最适合自己需求的模型服务。
大型语言模型排行榜,实时评估模型性能。
OpenCompass 2.0是一个专注于大型语言模型性能评估的平台。它使用多个闭源数据集进行多维度评估,为模型提供整体平均分和专业技能分数。该平台通过实时更新排行榜,帮助开发者和研究人员了解不同模型在语言、知识、推理、数学和编程等方面的性能表现。
汇总和比较全球主要AI模型提供商的价格信息
AIGCRank大语言模型API价格对比是一个专门汇总和比较全球主要AI模型提供商的价格信息的工具。它为用户提供最新的大语言模型(LLM)的价格数据,包括一些免费的AI大模型API。通过这个平台,用户可以轻松查找和比较OpenAI、Claude、Mixtral、Kimi、星火大模型、通义千问、文心一语、Llama 3、GPT-4、AWS和Google等国内外主要API提供商的最新价格,确保找到最适合自己项目的模型定价。
比较各种大型语言模型(LLM)的定价信息
LLM Pricing是一个聚合并比较各种大型语言模型(LLMs)定价信息的网站,这些模型由官方AI提供商和云服务供应商提供。用户可以在这里找到最适合其项目的语言模型定价。
比较不同大型语言模型的输出
LLM Comparator是一个在线工具,用于比较不同大型语言模型(LLMs)的输出。它允许用户输入问题或提示,然后由多个模型生成回答。通过比较这些回答,用户可以了解不同模型在理解、生成文本和遵循指令方面的能力。该工具对于研究人员、开发者和任何对人工智能语言模型有兴趣的人来说都非常重要。
提供可靠的性能测量数据,评估流行模型的性能。
The Fastest.ai是一个提供可靠的性能测量数据的网站,用于评估流行模型的性能。它通过测量模型的响应时间、每秒生成的token数量以及从请求到最终token生成的总时间来提供准确的性能数据。该网站旨在帮助用户选择最快的AI模型,并提供其他模型的性能比较。它对模型的性能进行日常更新,用户可以根据自己的需求选择合适的模型。
AI预算优化工具,比较和计算大型语言模型API的最新价格。
LLM Price Check是一个在线工具,它允许用户比较和计算不同大型语言模型(LLM)API的价格,这些API由领先的提供商如OpenAI、Anthropic、Google等提供。该工具可以帮助用户优化他们的AI预算,通过比较不同模型的价格和性能,用户可以做出更明智的选择。
提升大型语言模型性能的混合代理技术
MoA(Mixture of Agents)是一种新颖的方法,它利用多个大型语言模型(LLMs)的集体优势来提升性能,实现了最先进的结果。MoA采用分层架构,每层包含多个LLM代理,显著超越了GPT-4 Omni在AlpacaEval 2.0上的57.5%得分,达到了65.1%的得分,使用的是仅开源模型。
快速比较顶尖语言模型,无需编码
KraspAI Kompass是一个用于比较顶尖语言模型的平台,用户可以在不到一分钟的时间内测试各种提示,包括闭源和开源模型。用户可以创建自己独特的测试套件,并无需编码即可比较模型。该产品分为免费版、专业版和企业定制版,用户可以根据自己的需求选择合适的版本。
AI模型选择助手
Lumigator 是 Mozilla.ai 开发的一款产品,旨在帮助开发者从众多大型语言模型(LLM)中选择最适合其特定项目的模型。它通过提供任务特定的指标框架来评估模型,确保所选模型能够满足项目需求。Lumigator 的愿景是成为一个开源平台,促进道德和透明的AI开发,并填补行业工具链中的空白。
构建和训练大型语言模型的综合框架
DataComp-LM (DCLM) 是一个为构建和训练大型语言模型(LLMs)而设计的综合性框架,提供了标准化的语料库、基于open_lm框架的高效预训练配方,以及超过50种评估方法。DCLM 支持研究人员在不同的计算规模上实验不同的数据集构建策略,从411M到7B参数模型。DCLM 通过优化的数据集设计显著提高了模型性能,并且已经促成了多个高质量数据集的创建,这些数据集在不同规模上表现优异,超越了所有开放数据集。
释放AI的力量,轻松比较AI模型
Rawbot是一个AI模型比较平台,帮助用户轻松比较不同AI模型,并发挥它们在项目中的全部潜力。用户可以基于准确的并排比较来选择最佳的AI模型。Rawbot与ChatGPT、Cohere和J2 Complete兼容。
基于大型语言模型的高性能MacOS聊天应用
ChatMLX是一款现代、开源、高性能的MacOS聊天应用程序,基于大型语言模型构建。它利用MLX的强大性能和苹果硅芯片,支持多种模型,为用户提供丰富的对话选择。ChatMLX在本地运行大型语言模型,以确保用户隐私和安全。
AI模型性能评估平台
Scale Leaderboard是一个专注于AI模型性能评估的平台,提供专家驱动的私有评估数据集,确保评估结果的公正性和无污染。该平台定期更新排行榜,包括新的数据集和模型,营造动态竞争环境。评估由经过严格审查的专家使用特定领域的方法进行,保证评估的高质量和可信度。
高效为大型语言模型提供服务
FP6-LLM是一种用于大型语言模型的全新支持方案,通过六位量化(FP6)有效地减小了模型大小,并在各种应用中始终保持模型质量。我们提出了TC-FPx,这是第一个完整的GPU内核设计方案,统一支持各种量化位宽的浮点权重。我们将TC-FPx内核集成到现有推理系统中,为量化的LLM推理提供了全新的端到端支持(称为FP6-LLM),实现了推理成本和模型质量之间更好的权衡。实验证明,FP6-LLM使得使用单个GPU进行LLaMA-70b推理成为可能,实现的规范化推理吞吐量比FP16基准高1.69倍至2.65倍。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-8b是一个基于预训练的Llama3.1-8B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊的<|audio|>伪标记将输入音频转换为嵌入,并生成输出文本。未来版本计划扩展标记词汇以支持生成语义和声学音频标记,进而可以用于声码器产生语音输出。该模型在翻译评估中表现出色,且没有偏好调整,适用于语音代理、语音到语音翻译、语音分析等场景。
双语开源数学推理大型语言模型。
InternLM-Math-Plus 是一个最新的双语(英文和中文)开源大型语言模型(LLM),专注于数学推理,具有解决、证明、验证和增强数学问题的能力。它在非正式数学推理(如思维链和代码解释)和正式数学推理(如LEAN 4翻译和证明)方面都有显著的性能提升。
vivo自主研发的智能语言理解模型
蓝心大模型是vivo自主研发的智能语言理解模型,具有70亿模型参数量,可以处理32K上下文长度。它基于260TB的多语言训练语料,拥有强大的语言理解能力,可以广泛应用于内容创作、知识问答、逻辑推理、代码生成等场景,持续为用户提供安全可靠的人机交互体验。该模型已通过严格的安全合规检测,输出结果安全合规。
多模态大型语言模型,展示卓越的整体性能
InternVL2.5-MPO是一个先进的多模态大型语言模型系列,基于InternVL2.5和混合偏好优化构建。该模型集成了新增量预训练的InternViT和各种预训练的大型语言模型,如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。它支持多图像和视频数据,并且在多模态任务中表现出色,能够理解和生成与图像相关的文本内容。
让您的模型定制更加个性化
FABRIC 是一个通过迭代反馈来个性化定制扩散模型的工具。它提供了一种简单的方法来根据用户的反馈来改进模型的性能。用户可以通过迭代的方式与模型进行交互,并通过反馈来调整模型的预测结果。FABRIC 还提供了丰富的功能,包括模型训练、参数调整和性能评估。它的定价根据用户的使用情况而定,可满足不同用户的需求。
大型语言模型,支持多种参数规模
Meta Llama 3 是 Meta 推出的最新大型语言模型,旨在为个人、创作者、研究人员和各类企业解锁大型语言模型的能力。该模型包含从8B到70B参数的不同规模版本,支持预训练和指令调优。模型通过 GitHub 仓库提供,用户可以通过下载模型权重和分词器进行本地推理。Meta Llama 3 的发布标志着大型语言模型技术的进一步普及和应用,具有广泛的研究和商业潜力。
LG AI Research开发的多语言、高性能大型语言模型
EXAONE-3.5-32B-Instruct-GGUF是LG AI Research开发的一系列指令调优的双语(英语和韩语)生成模型,包含2.4B至32B参数的不同版本。这些模型支持长达32K令牌的长上下文处理,展现了在真实世界用例和长上下文理解中的最前沿性能,同时在与近期发布的类似规模模型相比,在通用领域保持竞争力。该模型系列通过技术报告、博客和GitHub提供了详细信息,并且包含了多种精度的指令调优32B语言模型,具有以下特点:参数数量(不含嵌入)为30.95B,层数为64,注意力头数为GQA,包含40个Q头和8个KV头,词汇量为102,400,上下文长度为32,768令牌,量化包括Q8_0、Q6_0、Q5_K_M、Q4_K_M、IQ4_XS等GGUF格式(也包括BF16权重)。
医疗领域先进的大型语言模型
HuatuoGPT-o1-70B是由FreedomIntelligence开发的医疗领域大型语言模型(LLM),专为复杂的医疗推理设计。该模型在提供最终响应之前,会生成一个复杂的思考过程,反映并完善其推理。HuatuoGPT-o1-70B能够处理复杂的医疗问题,提供深思熟虑的答案,这对于提高医疗决策的质量和效率至关重要。该模型基于LLaMA-3.1-70B架构,支持英文,并且可以部署在多种工具上,如vllm或Sglang,或者直接进行推理。
前沿的多模态大型语言模型
NVLM-D-72B是NVIDIA推出的一款多模态大型语言模型,专注于视觉-语言任务,并且通过多模态训练提升了文本性能。该模型在视觉-语言基准测试中取得了与业界领先模型相媲美的成绩。
独立分析AI语言模型和API提供商,帮助选择适合的模型和API。
Artificial Analysis是一个专注于AI语言模型和API提供商的独立分析平台。它提供详细的性能评估,帮助用户理解AI领域的格局,并为他们的具体用例选择最佳的模型和API提供商。该平台通过质量指数、吞吐量和价格等多个维度对不同的AI模型进行比较,使用户能够做出更明智的选择。
多语言大型语言模型
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
AI模型比较平台
thisorthis.ai是一个在线平台,用户可以在这里输入提示并选择不同的AI模型来生成响应,然后比较这些响应的风格、准确性和相关性。平台支持用户分享和投票,以发现哪些AI模型在公共意见中表现最佳。
© 2025 AIbase 备案号:闽ICP备08105208号-14