浏览量:446
最新流量情况
月访问量
72.86k
平均访问时长
00:04:09
每次访问页数
2.80
跳出率
50.91%
流量来源
直接访问
57.01%
自然搜索
25.52%
邮件
0.09%
外链引荐
13.95%
社交媒体
2.97%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
德国
12.60%
阿尔及利亚
6.24%
摩洛哥
9.76%
俄罗斯
34.73%
乌克兰
9.82%
强大的多模态LLM,商业解决方案
Reka Core是一个GPT-4级别的多模态大型语言模型(LLM),具备图像、视频和音频的强大上下文理解能力。它是目前市场上仅有的两个商用综合多模态解决方案之一。Core在多模态理解、推理能力、编码和Agent工作流程、多语言支持以及部署灵活性方面表现出色。
现代Python数据框库,专为人工智能设计。
DataChain是一个现代的Python数据框库,专为人工智能设计。它旨在将非结构化数据组织成数据集,并在本地机器上大规模处理数据。DataChain不抽象或隐藏AI模型和API调用,而是帮助将它们集成到后现代数据堆栈中。该产品以其高效性、易用性和强大的数据处理能力为主要优点,支持多种数据存储和处理方式,包括图像、视频、文本等多种数据类型,并且能够与PyTorch和TensorFlow等深度学习框架无缝对接。DataChain是开源的,遵循Apache-2.0许可协议,免费供用户使用。
多智能体系统,解决复杂任务
Magentic-One是由微软研究团队开发的一个通用多智能体系统,旨在解决开放性网络和文件任务。该系统代表了人工智能领域向代理系统发展的重要一步,这些系统能够完成人们在工作和生活中遇到的复杂多步骤任务。Magentic-One采用了一个名为Orchestrator的主智能体,负责规划、跟踪进度和在需要时重新规划,同时指导其他专门智能体执行任务,如操作网络浏览器、导航本地文件或编写和执行Python代码。Magentic-One在多个挑战性的代理基准测试中表现出与最新技术相媲美的性能,且无需对其核心能力或架构进行修改。
多模态语言模型,融合文本和语音
Spirit LM是一个基础多模态语言模型,能够自由混合文本和语音。该模型基于一个7B预训练的文本语言模型,通过持续在文本和语音单元上训练来扩展到语音模式。语音和文本序列被串联为单个令牌流,并使用一个小的自动策划的语音-文本平行语料库,采用词级交错方法进行训练。Spirit LM有两个版本:基础版使用语音音素单元(HuBERT),而表达版除了音素单元外,还使用音高和风格单元来模拟表达性。对于两个版本,文本都使用子词BPE令牌进行编码。该模型不仅展现了文本模型的语义能力,还展现了语音模型的表达能力。此外,我们展示了Spirit LM能够在少量样本的情况下跨模态学习新任务(例如ASR、TTS、语音分类)。
即买即用的人工智能对话服务
2233.ai是一个提供即买即用人工智能对话服务的网站。用户无需注册账号即可购买并使用服务,享受原生的ChatGPT Plus或Claude Pro体验。该平台强调个人隐私保护,每位用户的对话记录独立存储,确保私密安全。此外,2233.ai承诺无网络限制或封号问题,用户可以随时随地接入服务。价格方面,2233.ai提供的服务价格不到ChatGPT Plus订阅的一半,让更多人能够以更优惠的价格享受到先进的人工智能技术。
统一文本、音乐和动作生成模型
UniMuMo是一个多模态模型,能够将任意文本、音乐和动作数据作为输入条件,生成跨所有三种模态的输出。该模型通过将音乐、动作和文本转换为基于令牌的表示,通过统一的编码器-解码器转换器架构桥接这些模态。它通过微调现有的单模态预训练模型,显著降低了计算需求。UniMuMo在音乐、动作和文本模态的所有单向生成基准测试中都取得了有竞争力的结果。
国产化大模型,支持多模态,快速低成本智能化转型。
岩芯数智是一家专注于人工智能领域的公司,提供多种智能模型服务,包括Yan模型和Dolphin模型。Yan模型是国产化的大模型,支持多模态,承诺为用户提供训练周期短、数据集需求小、性价比更高的服务,帮助各产业链快速、低成本向智能化转型。Dolphin模型则提供智能对话、文章生成、文案摘要等功能,支持私域模型微调,以满足不同行业的需求。
精选优质AI内容,遇见未来
360AI导航是一个集合了多种人工智能工具和资源的平台,旨在为用户提供一站式的AI服务体验。该平台涵盖了从AI资讯、AI搜索、AI绘画到AI写作等多个领域的工具,帮助用户更高效地利用AI技术解决实际问题。360AI导航不仅提供了丰富的AI工具,还通过360智脑等产品展示了其在AI领域的技术实力和创新能力。
情商智商俱佳的多模态大模型
西湖大模型是心辰智能云推出的一款具有高情商和智商的多模态大模型,它能够处理包括文本、图像、声音等多种数据类型,为用户提供智能对话、写作、绘画、语音等AI服务。该模型通过先进的人工智能算法,能够理解和生成自然语言,适用于多种场景,如心理咨询、内容创作、客户服务等,具有高度的定制性和灵活性。西湖大模型的推出,标志着心辰智能云在AI领域的技术实力和创新能力,为用户提供了更加丰富和高效的智能服务体验。
高效编码的开源大型语言模型
Yi-Coder是一系列开源的代码大型语言模型(LLMs),在少于100亿参数的情况下提供最先进的编码性能。它有两种尺寸—1.5B和9B参数—提供基础和聊天版本,旨在高效推理和灵活训练。Yi-Coder-9B在GitHub的代码库级别代码语料库和从CommonCrawl筛选的代码相关数据上,额外训练了2.4万亿高质量token。Yi-Coder在多种编程任务中表现出色,包括基础和竞技编程、代码编辑和仓库级完成、长上下文理解以及数学推理。
统一多模态理解和生成的单一变换器
Show-o是一个用于多模态理解和生成的单一变换器模型,它能够处理图像字幕、视觉问答、文本到图像生成、文本引导的修复和扩展以及混合模态生成。该模型由新加坡国立大学的Show Lab和字节跳动共同开发,采用最新的深度学习技术,能够理解和生成多种模态的数据,是人工智能领域的一大突破。
多模态视觉任务的高效转换模型
LLaVA-OneVision是一款由字节跳动公司与多所大学合作开发的多模态大型模型(LMMs),它在单图像、多图像和视频场景中推动了开放大型多模态模型的性能边界。该模型的设计允许在不同模态/场景之间进行强大的迁移学习,展现出新的综合能力,特别是在视频理解和跨场景能力方面,通过图像到视频的任务转换进行了演示。
开源版Anthropic的Claude Artifacts界面
AI Artifacts是一个开源的Anthropic Claude Artifacts界面版本,使用E2B的代码解释器SDK和核心SDK执行AI代码。E2B提供了一个云沙箱来安全地运行AI生成的代码,并可以处理安装库、运行shell命令、运行Python、JavaScript、R以及Nextjs应用程序等。
一万亿Token和34亿张图像的多模态数据集
MINT-1T是由Salesforce AI开源的多模态数据集,包含一万亿个文本标记和34亿张图像,规模是现有开源数据集的10倍。它不仅包含HTML文档,还包括PDF文档和ArXiv论文,丰富了数据集的多样性。MINT-1T的数据集构建涉及多种来源的数据收集、处理和过滤步骤,确保了数据的高质量和多样性。
通过GPT等大型语言模型与你的文档对话
IncarnaMind是一个开源项目,旨在通过大型语言模型(LLMs)如GPT、Claude和本地开源LLMs,实现与个人文档(PDF、TXT)的交互对话。该项目利用滑动窗口分块机制和集成检索器,提高查询效率,增强LLMs的准确性。它支持多文档对话问答,突破了单文档限制,并兼容多种文件格式和LLM模型。
多模态长篇故事生成模型
SEED-Story是一个基于大型语言模型(MLLM)的多模态长篇故事生成模型,能够根据用户提供的图片和文本生成丰富、连贯的叙事文本和风格一致的图片。它代表了人工智能在创意写作和视觉艺术领域的前沿技术,具有生成高质量、多模态故事内容的能力,为创意产业提供了新的可能性。
大型多模态模型,处理多图像、视频和3D数据。
LLaVA-NeXT是一个大型多模态模型,它通过统一的交错数据格式处理多图像、视频、3D和单图像数据,展示了在不同视觉数据模态上的联合训练能力。该模型在多图像基准测试中取得了领先的结果,并在不同场景中通过适当的数据混合提高了之前单独任务的性能或保持了性能。
集成大型语言模型的SDK
Semantic Kernel是一个集成了大型语言模型(LLMs)如OpenAI、Azure OpenAI和Hugging Face的软件开发工具包(SDK),它允许开发者通过定义可串联的插件,在几行代码内实现与AI的交互。其特色在于能够自动编排AI插件,使用户能够通过LLM生成实现特定目标的计划,并由Semantic Kernel执行该计划。
革命性AI技术,多模态智能互动
GPT-4o是OpenAI的最新创新,代表了人工智能技术的前沿。它通过真正的多模态方法扩展了GPT-4的功能,包括文本、视觉和音频。GPT-4o以其快速、成本效益和普遍可访问性,革命性地改变了我们与AI技术的互动。它在文本理解、图像分析和语音识别方面表现出色,提供流畅直观的AI互动,适合从学术研究到特定行业需求的多种应用。
多模态语言模型的视觉推理工具
Visual Sketchpad 是一种为多模态大型语言模型(LLMs)提供视觉草图板和绘图工具的框架。它允许模型在进行规划和推理时,根据自己绘制的视觉工件进行操作。与以往使用文本作为推理步骤的方法不同,Visual Sketchpad 使模型能够使用线条、框、标记等更接近人类绘图方式的元素进行绘图,从而更好地促进推理。此外,它还可以在绘图过程中使用专家视觉模型,例如使用目标检测模型绘制边界框,或使用分割模型绘制掩码,以进一步提高视觉感知和推理能力。
首个全面评估多模态大型语言模型在视频分析中的性能基准。
Video-MME是一个专注于多模态大型语言模型(MLLMs)在视频分析领域性能评估的基准测试。它填补了现有评估方法中对MLLMs处理连续视觉数据能力的空白,为研究者提供了一个高质量和全面的评估平台。该基准测试覆盖了不同长度的视频,并针对MLLMs的核心能力进行了评估。
实时更新的多模态模型性能排行榜
OpenCompass多模态排行榜是一个实时更新的平台,用于评估和排名不同的多模态模型(VLMs)。它通过8个多模态基准测试来计算模型的平均得分,并提供详细的性能数据。该平台仅包含开源的VLMs或公开可用的APIs,旨在帮助研究人员和开发者了解当前多模态模型的最新进展和性能表现。
为开发者提供高质量编程、AI等领域阅读体验
BestBlogs.dev 是一个专注于编程、人工智能、产品设计、商业科技及个人成长领域的阅读平台。它通过先进的语言模型,为开发者提供智能摘要、精准评分与多语言辅助,帮助用户高效过滤信息噪音,节约时间,实现技术与认知的双重飞跃。
GPT4 Omni是一款远不止于语音助手的产品。
GPT4 Omni是一种全新的模型,可以处理文本、视觉和音频,具有多模态功能。它在语音能力方面具有革命性,同时还具备文本、图像和音频处理的能力。GPT4 Omni的优势是可以同时处理和生成多种主要模态,且响应时间较快。
GPT4 Omni是一款更多功能的语音助手。
GPT4 Omni是一款多模态模型,能处理和生成文本、音频和图像。它结合了OpenAI的Whisper和TTS技术,具有更好的推理能力和更低的延迟。GPT4 Omni是OpenAI目前最先进的模型,具有革命性的多模态能力,为用户提供了更多的创造力和灵活性。它的价格更低且更高效,代表了人工智能技术的新一代。
简化 LLM 提示管理和促进团队协作
Langtail 是一个旨在简化大型语言模型(LLM)提示管理的平台。通过Langtail,您可以增强团队协作、提高效率,并更深入地了解您的AI工作原理。尝试Langtail,以更具协作和洞察力的方式构建LLM应用。
将LLM接入Comfy UI的插件
Tara是一款插件,可以将大型语言模型(LLM)接入到Comfy UI中,支持简单的API设置,并集成LLaVa模型。其中包含TaraPrompter节点用于生成精确结果、TaraApiKeyLoader节点管理API密钥、TaraApiKeySaver节点安全保存密钥、TaraDaisyChainNode节点串联输出实现复杂工作流。
基于百度文心大模型的编程辅助工具
Comate是由百度基于文心大模型研发的编程辅助工具,可提供自动代码生成、单元测试生成、注释生成以及智能问答等功能。支持上百种编程语言,旨在帮助开发者大幅提升编码效率。使用Comate,让编程更加高效和便捷。个人版本提供业务代码与测试代码的生成、代码优化与修复、自然语言对话式技术问答等多维度辅助编码能力。企业版本在个人版本的基础之上,同时提供完备的数据报表能力,助力企业分析应用效果、定位效能瓶颈,一站式赋能研发过程降本提效。私有化部署版本涵盖企业版本全部能力,同时支撑大型企业规模化部署与应用,保障使用效果,维护数据安全。
© 2024 AIbase 备案号:闽ICP备08105208号-14